• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Specialized brain regions recognize vocal cues that don’t involve speech

Bioengineer by Bioengineer
July 28, 2022
in Biology
Reading Time: 3 mins read
0
Two brain regions specialize at recognizing voices
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PITTSBURGH, July 28, 2022 – Specific parts of the brain recognize complex cues in human vocal sounds that do not involve speech, such as crying, coughing or gasping—found researchers from the University of Pittsburgh.

Two brain regions specialize at recognizing voices

Credit: Kyle Rupp and Taylor Abel

PITTSBURGH, July 28, 2022 – Specific parts of the brain recognize complex cues in human vocal sounds that do not involve speech, such as crying, coughing or gasping—found researchers from the University of Pittsburgh.

In a paper published today in PLOS Biology, scientists showed that two areas of the auditory cortex are specialized to recognize human voice sounds that, unlike speech, do not carry linguistic meaning. Rather, they help us react to sound cues that allow people to instantly identify characteristics of the person who is speaking, such as gender, approximate age, mood and even height—all without seeing them.

“Voice perception is similar to how humans recognize different faces,” said senior author Taylor Abel, M.D., assistant professor of neurological surgery at Pitt. “Voices that don’t include speech—for example, a baby’s cries, coughing, moaning or exclamations—allow us to gain a lot of information about the person making those vocalizations in the absence of other information about the person.”

Humans live in a world full of sounds, where noises from the environment shape our daily interactions with our surroundings and other people. And even though speech is one of the unique aspects of human communication that does not have direct analogs in the animal world, people do not rely on speech alone to convey auditory information.

Non-speech aspects of voice serve a vital role in our communication toolbox, expanding human ability to express oneself accurately and dynamically. Part of that expression is subconscious, and part of it may be intentionally modulated by the speaker to convey a wide spectrum of emotion, such as happiness, fear or disgust.

Humans are born with the capacity for voice recognition—in fact, babies can recognize their mother’s voice while still in the womb—but that capacity is dynamic, and it continues to evolve throughout adolescence.

Abel, who is a practicing pediatric neurosurgeon specializing in epilepsy, had a unique opportunity to peek at how the human brain responds to voice.

To identify regions of the brain that are responsible for generating seizures in some people with epilepsy, neurosurgeons may implant temporary electrodes into the brain to carefully record its electrical signals. This practice allows physicians to precisely locate the site of the seizure and eventually remove that part of the brain, while sparing the surrounding healthy tissue.

Eight patients with epilepsy consented to participate in a study where Abel and his team used the implanted electrodes to measure which areas of the auditory cortex responded when voice sounds—grunts, yelps, laughs—were presented to the patients.

Using a combination of direct brain recordings and computational modeling, investigators were able to describe in unprecedented detail how voice representation evolves over time and decode when a voice sound had been played based on patterns of neural activity from the auditory cortex.

Researchers found that most of that activity came from two regions in the auditory cortex—folds of the brain’s gray matter known as superior temporal gyrus (STG) and superior temporal sulcus (STS). While prior brain imaging studies showed that the STG and STS are important for voice processing, this study demonstrates that these regions represent voice as a distinct sound category rather than simply representing the physical or acoustic aspects of voice.

This new knowledge about the organization of the voice-recognition system wired in our brains will enable researchers to better understand neurological disorders such as schizophrenia or autism, where voice perception is altered or missing, and even help create better voice assistant devices, which are currently good at recognizing speech but less adept at differentiating between several speakers.

Kyle Rupp, Ph.D., is lead author on the paper; additional authors are Jasmine Hect, Madison Remick, Avniel Ghuman, Ph.D., and Bharath Chandrasekaran, Ph.D., all from Pitt; and Lori Holt, Ph.D., of Carnegie Mellon University.

This research was supported by the National Institutes of Health (grants R21DC019217-01A1 and 2R01DC013315-07).



Journal

PLoS Biology

Article Title

Neural responses in human superior temporal cortex support coding of voice representations

Article Publication Date

28-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Identifying Superior Walnut Genotypes in the Himalayas

October 20, 2025
Leptin-Sensing Brain Circuit Reduces Anxiety to Support Essential Behaviors: Eating, Exploring, and Resting

Leptin-Sensing Brain Circuit Reduces Anxiety to Support Essential Behaviors: Eating, Exploring, and Resting

October 20, 2025

Prenatal BPA Alters YY1 and Affects Offspring Brain

October 20, 2025

GABA Protects Colorectal Cancer Cells from Cortisol Damage

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Policies Supporting Conservation Agriculture in Zimbabwe

RNA Replicon Vaccine Shields 23 Zoo Bird Species

Universal Superionic Conduction in Van der Waals Salts

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.