• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New insights into HIV latent cells yield potential cure targets

Bioengineer by Bioengineer
July 27, 2022
in Health
Reading Time: 3 mins read
0
Scanning electron micrograph of an HIV-infected H9 T cell.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WHAT:
In a presentation today at AIDS 2022, the 24th International AIDS Conference in Montreal, scientists with the National Institute of Allergy and Infectious Diseases’ (NIAID) Vaccine Research Center (VRC) and their collaborators described how their use of cutting-edge technology revealed new insights into cellular reservoirs of HIV and what those observations could mean for the next steps in HIV cure research. NIAID is part of the National Institutes of Health.

Scanning electron micrograph of an HIV-infected H9 T cell.

Credit: NIAID

WHAT:
In a presentation today at AIDS 2022, the 24th International AIDS Conference in Montreal, scientists with the National Institute of Allergy and Infectious Diseases’ (NIAID) Vaccine Research Center (VRC) and their collaborators described how their use of cutting-edge technology revealed new insights into cellular reservoirs of HIV and what those observations could mean for the next steps in HIV cure research. NIAID is part of the National Institutes of Health.

An enhanced understanding of the HIV-infected, memory CD4+ T cells that persist over decades in individuals taking antiretroviral therapy has been a long-time goal of HIV cure researchers. However, technology limitations have made it difficult to isolate or analyze these individual cells in their natural state. As a result, scientists have been unable to determine whether the cells possess distinctive attributes that HIV-cure-directed therapies may exploit. 

In the presentation, Eli Boritz, M.D., Ph.D., chief of the Virus Persistence and Dynamics Section in the VRC Laboratory of Immunology, described NIAID’s long-standing collaboration with a bioengineering research group at the University of California, San Francisco. The researchers developed a custom microfluidic sorting technology termed Focused Interrogation of Cells by Nucleic Acid Detection and Sequencing (FIND-Seq). This technology defines gene expression patterns from rare cells harboring latent HIV by generating millions of single-cell reaction containers in the form of water-in-oil emulsions, in which messenger RNA capture and virus DNA detection can be performed sequentially while maintaining segregation among cells. The scientists applied the FIND-Seq technology to blood cells from six people with HIV who had begun taking ART while chronically infected and who had experienced more than one year of viral suppression. Using data produced by FIND-Seq, the scientists compared the gene expression patterns of HIV-infected memory CD4+ T cells to those of HIV-uninfected memory CD4+ T cells in the same individuals. 

The researchers found clear differences between the HIV-infected CD4+ T cells and their uninfected counterparts, including gene expression patterns linked to the suppression of multiple steps in the HIV lifecycle and to cell survival and proliferation. According to the scientists, these results indicate that the HIV-infected memory CD4+ T-cell reservoir is a distinctive cell population that may be uniquely susceptible to specific targeted therapies. In this regard, the study reinforces recent interest among scientists in improving upon HIV cure strategies that are based on latency reversal by incorporating drugs that relieve blocks at multiple HIV lifecycle steps, and by combining these with agents that potentiate physiologic cell death.

ABSTRACT TITLE:
Transcriptional Programs of HIV Silencing and Cell Survival in HIV-Infected Memory CD4 T Cells Under Antiretroviral Therapy.

WHO:
Dr. Boritz is available to speak about the research presented at the AIDS 2022 meeting today. 

CONTACT:
To schedule interviews, please contact NIAID News Office, (301) 402-1663, [email protected].


NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit https://www.nih.gov/. 

NIH…Turning Discovery Into Health®



Share12Tweet8Share2ShareShareShare2

Related Posts

New Guideline Highlights Importance of Mood and Mental Health Discussions Between Patients and Clinicians

October 20, 2025

Exploring Co-Occurring Autism and BPD in Inpatients

October 20, 2025

Nursing Students’ Metaphors: Envisioning AI’s Future Impact

October 20, 2025

ALS Modulator Signature Revealed in Blood Cells

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    297 shares
    Share 119 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Can Animals Be Fooled by Optical Illusions? Insights from Fish and Birds on Perception

New Guideline Highlights Importance of Mood and Mental Health Discussions Between Patients and Clinicians

Record High Critical Currents in Nanostructured MgB2 Magnets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.