• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Montana Bio Station researchers find nutrient imbalance in flathead lake

Bioengineer by Bioengineer
July 12, 2022
in Chemistry
Reading Time: 5 mins read
0
Jessie B. boat
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FLATHEAD LAKE – As any gardener or farmer can tell you, nitrogen and phosphorus are chemical elements found in soils and fertilizers that plants need to grow. They also know different ratios of nitrogen and phosphorus are ideal or detrimental for different types of plants and crops.

Jessie B. boat

Credit: Flathead Lake Biological Station

FLATHEAD LAKE – As any gardener or farmer can tell you, nitrogen and phosphorus are chemical elements found in soils and fertilizers that plants need to grow. They also know different ratios of nitrogen and phosphorus are ideal or detrimental for different types of plants and crops.

Nitrogen and phosphorus also play a powerful role in lakes and can alter the clear and pristine waters of low-nutrient lakes. But while considerable efforts have been made to monitor the amounts of each nutrient element separately, limited research has assessed how the ratio of nitrogen to phosphorus being supplied to lakes might also alter algae growth and water quality in consequential ways. 

Now a team of researchers led by scientists from the University of Montana’s Flathead Lake Biological Station has examined nearly 40 years of nutrient dynamics in Flathead Lake.  This unique dataset, assembled by the FLBS Flathead Monitoring Program, documents a sustained imbalance between nitrogen and phosphorus that likely has significant ecological consequences in Flathead Lake, as well as other low-nutrient ecosystems.

Their work was published July 11 by the Proceedings of the National Academy of Sciences.  

“Since the early 1990s, I’ve worked to better understand when and where nitrogen and phosphorus limit the growth of lake organisms, such as plankton,” said FLBS Director Jim Elser, a member of the National Academy of Sciences and the lead author on the study. “It turns out that strong imbalances in the ratio between nitrogen and phosphorus in ecosystems and organisms can have big impacts. I wanted to see if this was going on in Flathead Lake.”

For over a century, research and monitoring programs at FLBS have served as the first line of defense against ever-looming threats to the renowned water quality of the Flathead watershed. The primary threats of nutrient pollution and invasive species have remained the bio station’s oldest foes in the fight to sustain the lake’s condition and excellent water quality.

Flathead Lake is known for its clean and clear water, largely because the geology encompassing its watershed is ancient and low in nutrients, especially the nutrient phosphorus. This means there are very low levels of nutrients that can be weathered from the bedrock to reach the lake through rainstorms and snowmelt. Therefore, naturally there are low levels of nutrients available for lake algae to grow, and Flathead Lake remains clear and blue instead of green and murky.

This low background of naturally supplied nutrients makes Flathead Lake very sensitive to human-driven inputs of nutrients. Such human-driven inputs of nutrients into Flathead Lake and associated algal blooms raised concerns in the 1970s and ’80s. Subsequently, research conducted by FLBS scientists led to nutrient reduction measures in the Flathead watershed, including one of the nation’s largest bans on phosphorus-containing laundry detergents and a multimillion-dollar overhaul of local wastewater treatment facilities to remove phosphorus to very low levels.

But in recent years, Elser and his colleagues began to wonder if monitoring nitrogen and phosphorus in isolation was enough. Given his long history in developing and testing the theory of ecological stoichiometry – the study of the balance of multiple chemical elements in ecological interactions – Elser was eager to find out. 

“We found that the overall levels of nitrogen and phosphorus in Flathead Lake and its surrounding rivers and streams, while variable within years and year-to-year, are low but not increasing,” said Elser. “In fact, nitrogen and phosphorus levels coming into Flathead Lake from its larger rivers actually appear to be slowly declining. This is great news for the water quality and clarity in our beloved Flathead Lake, while water quality in many of the world’s lakes is declining due to increasing nutrient inputs.”

Then came a surprising development. While the overall levels of nitrogen and phosphorus in Flathead Lake weren’t increasing, the researchers discovered that the lake has sustained a high ratio of nitrogen to phosphorus across a span of four decades, often reaching values that greatly exceed the normal nitrogen-to-phosphorus recipe that matches the needs of most phytoplankton, the lake’s microscopic floating algae.

To put it another way, just as humans benefit from a well-balanced breakfast or farmers apply a fertilizer with the appropriate ratio of nitrogen to phosphorus for specific crops, microorganisms that make up the foundation of a lake’s food web depend on a very specific ratio of nutrients. When the ratio between nitrogen and phosphorus is high, as it is in Flathead Lake, plankton growth is likely limited by lack of available phosphorus for much of the year.  

Through a series of experiments, the team of researchers showed that Flathead Lake phytoplankton are phosphorus-limited. This means the algae are forced to build cells that have low content of phosphorus, making them not particularly nutritious. For the tiny lake animals, zooplankton, which eat those phytoplankton and thereby sustain the lake’s high transparency, this amounts to the equivalent of a “junk food” diet. As a result the zooplankton also become phosphorus-limited and their abundances low.

Finally, the team showed that the strong nitrogen-to-phosphorus imbalance in Flathead Lake sets the stage for potential production of the greenhouse gas methane. This occurs when phosphorus-hungry microbes start to scavenge phosphorus from organic molecules and produce methane as a byproduct.

These findings have implications not only for Flathead Lake but also for lakes globally. Wastewater treatment systems, agricultural runoff and urban influences are increasingly recognized as contributing to nitrogen-to-phosphorus imbalance in a variety of situations.     

“At Flathead Lake, implementation of wastewater treatment processes that more effectively remove nitrogen would help balance the lake’s nitrogen-to-phosphorus ratio,” Elser said. “Regionally, a reduction of the atmospheric transport of nitrogen, which occurs through fossil fuel combustion or volatilization of agricultural fertilizers or animal wastes, would also help reduce nitrogen inputs to the lake.”

When it comes to the building blocks of our lake ecosystems, in other words, nutrient balance matters.

Besides Elser, authors on the study include FLBS lake ecologist Shawn Devlin, Nanjing Institute of Geography and Limnology scientist Jinlei Yu, FLBS lab manager Adam Baumann, FLBS microbial ecologist Matthew Church, Montana State University Research Professor John Dore, FLBS stream ecologist Robert Hall, FLBS student and UM researcher Melody Hollar, Oklahoma State University scientist Tyler Johnson, Great Lakes Research Center Assistant Professor Trista Vick-Majors and FLBS student and UM researcher Cassidy White.

For the complete study, visit the Proceedings of the National Academy website at https://www.pnas.org/eprint/BTJ6FEQZNWYCSCB93R2U/full.

###



Journal

Proceedings of the National Academy of Sciences

Article Title

Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake

Article Publication Date

11-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.