• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CO2, the philosopher’s stone to obtain valuable pharmaceuticals

Bioengineer by Bioengineer
January 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ICIQ

Researchers at the Institute of Chemical Research of Catalonia (ICIQ) in Tarragona have developed a method that transforms cyclic carbonates -that can be easily obtained from CO2- into more valuable, chiral molecules chemists call vicinal amino-alcohols. Amino-alcohols are used in a myriad of drugs such as antimalarials, antivirals (like Tamiflu®), analgesics and antiarrhytmics.

The group, led by Prof. Arjan Kleij, develops new methodologies to convert small molecules -like CO2 and other waste gases- into useful chemicals. In previous work, they developed various catalytic routes to functional cyclic carbonates using carbon dioxide and easily accessible chemicals. Kleij and co-workers made these transformations possible with cheap and sustainable iron and aluminium catalysts.

Now, in a new paper recently published in the Journal of the American Chemical Society, ICIQ researchers show how to transform these carbonates into more valuable, highly challenging chiral molecules known as amino-alcohols. The process uses a very efficient palladium catalyst, which is more abundant and less expensive than previously used rhodium alternatives. This reaction also releases CO2, which can be re-used to make new carbonates, thereby closing the cycle.

"Chiral amino-alcohol structures are very common in pharmaceutical products, this new methodology allows us to obtain them selectively from simple, readily available starting materials," says Aijie Cai, who carried out the experiments. "Moreover, the method is quite user-friendly, it works without any additives or special precautions in just a few hours at 0°C," he adds.

Prof. Kleij, group leader at ICIQ, comments how "many years ago we developed various efficient ways to prepare functional cyclic carbonates using CO2. Now we are focusing on their post-synthetic conversion to create more challenging molecules with wider application potential. Chiral amino-alcohols are particularly valuable for the pharmaceutical industry, because they are precursors to important drugs such as antivirals and antimalarials."

CO2 is key to all this process; it is the philosopher's stone that transforms simple chemicals into valuable drugs. Kleij typically refers to it as "CO2 facilitated chemistry": without carbon dioxide, none of the reaction steps would work. In the first step, researchers convert the gas into useful cyclic carbonates. During the second step, a palladium-catalysed CO2 elimination triggers the formation of the chiral products. The release of the gas allows the chemistry to move forward. CO2 could be recycled, making the overall process sustainable with minimal carbon emission.

###

Media Contact

Fernando Gomollón-Bel
[email protected]
34-977-920-200 x370
@ICIQchem

http://www.iciq.es/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

September 3, 2025
Transforming Date Palm Waste into Probiotic Yogurt Enhancements

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

September 3, 2025

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

September 3, 2025

Dad’s Childhood Exposure to Passive Smoking May Impact Kids’ Lung Health for Life

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.