• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Double-layered catalyst generates more hydrogen

Bioengineer by Bioengineer
June 21, 2022
in Biology
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The average office worker often endures pain in many parts of the body as a side effect to sedentary desk jobs. It is not rare to see even young people suffer from shoulder pain, which previously had been mainly experienced by older people. Once shoulder pain is inflicted, changing clothes, let alone freely moving parts of the body, is difficult. Falling asleep is also not easy. While the rotator cuffs are commonly damaged naturally with aging, regenerating it has proved to be challenging.

A POSTECH research team, comprised of Professor Dong-Woo Cho and Dr. Suhun Chae in the Department of Mechanical Engineering, and Professor Jinah Jang and Ph.D. candidate Uijung Yong in the Department of Convergence IT Engineering, has developed a complex tissue platform that can restore damaged rotator cuffs through a joint study with Professor Hak Soo Choi inthe Harvard Medical School. Tissue-specific extracellular matrix bioink is used to 3D-bioprint this platform, which can accurately mimic the complex structure of rotator cuffs.

This research outcome, which can give new hope to patients suffering from chronic shoulder pain, was recently published in the international journal Bioactive Materials.

The research team transplanted this platform to rats with full-thickness tears of the rotator cuffs, and observed regeneration of their tissues and shoulder function recovery. As a result, it was confirmed that this platform, which includes stem cells, can indeed regenerate rotator cuffs.

Notably, the team succeeded in visualizing this process by using near-infrared fluorescence imaging coupled with tissue-specific bioimaging agents. With this, the researchers were able to monitor anatomic change and regeneration processes in the animal model in real time in a non-invasive manner.

This platform offers a microenvironment and components similar to those of the actual tissue. Therefore, once applied to patients, it is expected to have high treatment benefits and eventual recovery of shoulder function. It is particularly beneficial for those patients who cannot use autologous tissues to regenerate rotator cuffs by providing a customized treatment option.

This study was supported by the Nano-materials Core Technology Development project of the National Research Foundation of Korea and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in the U.S.

Figure 1

Credit: POSTECH

The average office worker often endures pain in many parts of the body as a side effect to sedentary desk jobs. It is not rare to see even young people suffer from shoulder pain, which previously had been mainly experienced by older people. Once shoulder pain is inflicted, changing clothes, let alone freely moving parts of the body, is difficult. Falling asleep is also not easy. While the rotator cuffs are commonly damaged naturally with aging, regenerating it has proved to be challenging.

A POSTECH research team, comprised of Professor Dong-Woo Cho and Dr. Suhun Chae in the Department of Mechanical Engineering, and Professor Jinah Jang and Ph.D. candidate Uijung Yong in the Department of Convergence IT Engineering, has developed a complex tissue platform that can restore damaged rotator cuffs through a joint study with Professor Hak Soo Choi inthe Harvard Medical School. Tissue-specific extracellular matrix bioink is used to 3D-bioprint this platform, which can accurately mimic the complex structure of rotator cuffs.

This research outcome, which can give new hope to patients suffering from chronic shoulder pain, was recently published in the international journal Bioactive Materials.

The research team transplanted this platform to rats with full-thickness tears of the rotator cuffs, and observed regeneration of their tissues and shoulder function recovery. As a result, it was confirmed that this platform, which includes stem cells, can indeed regenerate rotator cuffs.

Notably, the team succeeded in visualizing this process by using near-infrared fluorescence imaging coupled with tissue-specific bioimaging agents. With this, the researchers were able to monitor anatomic change and regeneration processes in the animal model in real time in a non-invasive manner.

This platform offers a microenvironment and components similar to those of the actual tissue. Therefore, once applied to patients, it is expected to have high treatment benefits and eventual recovery of shoulder function. It is particularly beneficial for those patients who cannot use autologous tissues to regenerate rotator cuffs by providing a customized treatment option.

This study was supported by the Nano-materials Core Technology Development project of the National Research Foundation of Korea and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in the U.S.



Journal

Bioactive Materials

DOI

10.1016/j.bioactmat.2022.05.004

Article Title

3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration

Article Publication Date

11-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.