• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Aging-US | WRNing for the right DNA repair pathway choice

Bioengineer by Bioengineer
June 16, 2022
in Chemistry
Reading Time: 4 mins read
0
WRNing for the right DNA repair pathway choice
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, NY- June 16, 2022 – A new editorial paper was published in Aging (Aging-US) Volume 14, Issue 11, entitled, “WRNing for the right DNA repair pathway choice.”

WRNing for the right DNA repair pathway choice

Credit: © 2022 Lee et al.

BUFFALO, NY- June 16, 2022 – A new editorial paper was published in Aging (Aging-US) Volume 14, Issue 11, entitled, “WRNing for the right DNA repair pathway choice.”

Premature aging diseases, also called ‘progeroid syndrome’, display signs and features of normal aging in early life, ultimately leading to premature death. Although progeroid syndromes do not perfectly mimic chronological aging, they can be excellent model systems to study characteristics of normal aging. 

Werner syndrome (WS) is one of the rare autosomal recessive progeroid syndromes, characterized by accelerated aging. WRN is suggested to play a central role in maintaining genome stability and rapidly recruits to the DNA damage sites to take part in DNA repair, including base excision DNA repair (BER), classical/alternative non-homologous end joining (NHEJ), homologous recombination (HR), and replication re-start after DNA damage.  

WRN makes critical DNA-repair pathway choices between classical and alternative NHEJs. In addition to its key role in NHEJ, WRN has been suggested to also participate in HR. However, how it regulates the pathway choice between NHEJ and HR was still unclear.  

Jong-Hyuk Lee, Deborah L. Croteau and Vilhelm A. Bohr, from the National Institutes of Health’s National Institute on Aging, authored a new editorial paper about findings from their recent study. 

“In a recent paper, we showed that CDK2 phosphorylating WRN on serine residue 426 is critical for WRN to make its DNA double strand break (DSB) repair pathway choice between NHEJ and HR [4].”

Abnormal DSB recruitment, altered interaction with RPA, strand annealing activity, and DSB repair activities were observed when cells were forced to express WRN engineered to mimic the unphosphorylated or phosphorylation state at serine 426. 

“These findings along with the previous discovered role in NHEJ pathway choice, move our understandings one step closer to the true nature of genomic instability that lies within WS.”

Interestingly, another RECQL family member, RECQL4 has also been identified as one of the crucial decision-makers during DSB repair pathway choice. A graphic representation of RecQs in DSB pathway choice is shown in Figure 1.

Notably, primary fibroblast cells show similarly increased persistent DNA damage after WRN or RECQL4 knockdown, and CDK regulatory mechanisms on WRN and RECQL4 have functional similarities in DSB response.

“It is thus conceivable that investigating the cooperative roles of WRN and RECQL4 in DSB pathway choice should be a future goal for DNA repair and aging research.”
 

DOI: https://doi.org/10.18632/aging.204120 

Corresponding Author: Vilhelm A. Bohr 

Email: [email protected] 

Keywords: DNA repair, RecQ helicase, helicase, DNA double strand repair pathways 

Sign up for free Altmetric alerts about this article:  https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204120 

 

About Aging-US:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Follow Aging on social media: 

  • SoundCloud – https://soundcloud.com/Aging-Us
  • Facebook – https://www.facebook.com/AgingUS/
  • Twitter – https://twitter.com/AgingJrnl
  • Instagram – https://www.instagram.com/agingjrnl/
  • YouTube – https://www.youtube.com/agingus​
  • LinkedIn – https://www.linkedin.com/company/aging/
  • Pinterest – https://www.pinterest.com/AgingUS/

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204120

Method of Research

Experimental study

Subject of Research

Cells

Article Title

WRNing for the right DNA repair pathway choice

Article Publication Date

1-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

November 4, 2025
Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

Microsimulation Reveals Risk Factors Impacting Major Illness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.