• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New method helps exfoliate hexagonal boron nitride nanosheets

Bioengineer by Bioengineer
June 16, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chinese researchers recently reported an innovative mechanical process for controllably exfoliating hexagonal boron nitride nanosheets (h-BNNSs).
This method, known as the “water-icing triggered exfoliation process,” was proposed by Prof. ZHANG Junyan’s group from the Lanzhou Institute of Chemical Physics (LICP) of the Chinese Academy of Sciences (CAS).

Freezing and ultrasonication assisted exfoliation

Credit: Image by LICP

Chinese researchers recently reported an innovative mechanical process for controllably exfoliating hexagonal boron nitride nanosheets (h-BNNSs).
This method, known as the “water-icing triggered exfoliation process,” was proposed by Prof. ZHANG Junyan’s group from the Lanzhou Institute of Chemical Physics (LICP) of the Chinese Academy of Sciences (CAS).

h-BNNSs, with a honeycomb-like structure similar to graphene, show excellent chemical and physical properties, such as high thermal conductivity, good resistance to oxidation, remarkable mechanical strength, a low dielectric constant, outstanding lubricity, excellent biocompatibility, and optical properties.

Due to these characteristics, h-BNNSs are promising materials for various applications, including high-performance electronic devices, dielectric substrates, thermal management, lubrication, sensors, catalysts, and sorbents. As a result, developing a simple, controllable, and scalable method to produce high-quality h-BNNSs for commercial applications is an urgent need.

In their new research, ZHANG and his team proposed a scalable and controllable approach to exfoliate high-quality h-BNNSs from h-BN flakes.

“This method relies on efficient reduction of h-BNNS interlayer interaction by rapid volume expansion of water in icing,” said ZHANG.

Generally, h-BNNSs can be prepared using a process of chemical vapor deposition (CVD) and physical exfoliation. CVD can produce wafer-scale, single-crystal monolayer h-BNNSs while the physical exfoliation process can achieve scalable production of small-sized h-BNNSs.

Based on molecular dynamics simulations, the researchers suggested that -OH groups can cause local structural distortion in the defects/edges of h-BN flakes to form an “entrance” for water molecules coming into the h-BNNS interlayer. This in turn presents a sufficient number of relatively long-lived hydrogen bonds that can generate fairly compact initial nuclei for ice nucleation.

The initial nuclei then slowly change in shape and size until they reach a stage that allows rapid expansion as the temperature drops sharply. This results in an increase in interlayer spacing and reduction of interlayer forces between adjacent h-BNNS layers as well as efficient exfoliation of h-BNNSs during subsequent ultrasonication.

“By adjusting the parameters, this exfoliation process can be used to produce large quantities of different high-quality h-BNNSs,” said Dr. AN Lulu, first author of the study.

“This method offers an environmentally friendly method to exfoliate h-BNNSs with controllable thickness by a rapid water freezing and subsequent ultrasonication process. These as-obtained h-BNNSs can be used as polymer additives, thermal conductive fillers, and flame retardants,” said Prof. YU Yuanlie, corresponding author of the study.

This study was published online in Cell Reports Physical Science and funded by the National Natural Science Foundation of China, the Foundation of LICP, CAS, and the Natural Science Foundation of Gansu Province.



Journal

Cell Reports Physical Science

DOI

10.1016/j.xcrp.2022.100941

Article Title

Water-icing-triggered scalable and controllable exfoliation of hexagonal boron nitride nanosheets

Share12Tweet8Share2ShareShareShare2

Related Posts

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

Reversible Small-Molecule Assembly Enables Recyclable Battery Electrolytes

August 29, 2025
Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Orangutans Master Bed-Building Through Observation and Practice, Study Finds

Nurses’ Moral Challenges: Presenteeism and Disengagement Examined

Reduced 6-Minute Walk Boosts Post-Surgery Readmission Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.