• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new model predicts forest tree growth in new environments

Bioengineer by Bioengineer
May 2, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Trees are an essential cornerstone in the functioning and survival of forest ecosystems. But as global change accelerates, certain tree populations, too slow to adapt, may experience population decline or even extinction. Conservation and forest management strategies can be implemented to avoid such scenarios, such as moving trees to more compatible climates, known as assisted gene flow, or to threatened populations that lack genetic diversity, known as evolutionary rescue. Because such strategies commit forest management authorities for several years, it is important to anticipate how transplanted trees will respond to their new environment.

Marime pine

Credit: Unite conservatoire genetique de Lacanau

Trees are an essential cornerstone in the functioning and survival of forest ecosystems. But as global change accelerates, certain tree populations, too slow to adapt, may experience population decline or even extinction. Conservation and forest management strategies can be implemented to avoid such scenarios, such as moving trees to more compatible climates, known as assisted gene flow, or to threatened populations that lack genetic diversity, known as evolutionary rescue. Because such strategies commit forest management authorities for several years, it is important to anticipate how transplanted trees will respond to their new environment.

Until now, prediction models have been based mainly on the climate of origin of transplanted tree populations. However, genomic data provide valuable information on adaptive processes in trees, such as growth. With climatic and genomic information more and more accessible thanks to the continually decreasing cost of sequencing technology[1], the research team* developed models combining these two types of data to improve the robustness and accuracy of predictions.

A model based on a large-scale experimental scheme of maritime pine in France, Spain and Portugal

Researchers developed the models using maritime pine, an emblematic species of the Mediterranean basin. An experimental monitoring system was set up at five sites, in France (Cestas Pierroton (33)), Spain (Asturias, Cáceres and Madrid) and Portugal (Fundão), with trees from 34 maritime pine populations collected throughout the species’ natural habitat. Scientists focused on predicting the height growth of trees, a critical factor in economic and ecological terms given that the fastest growing trees have a higher probability of survival and reproduction.

Results show that observed height variations in maritime pine are explained by the different gene pools from which they originate and by the different climates in which they’ve evolved. The incorporation of climatic and genomic data into the models improved predictions of population height growth by an average of 14–25% depending on the experimental site, compared to models based on climatic data alone.

The findings hold potential for the development of models to predict how transplanted tree populations adapt to a new environment in the context of forest conservation and management.

 


[1] Sequencing is the process of determining the order of the bases that make up the DNA of an organism and allows its different genes to be identified.

* Laboratories involved:

  • UMR BIOGECO (INRAE, Université de Bordeaux)
  • Institut de mathématiques de Bordeaux (CNRS/Bordeaux INP/Université de Bordeaux)
  • EGFV joint research unit (Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV)


Journal

The American Naturalist

DOI

10.1086/720619

Article Title

Combining climatic and genomic data improves range-wide tree height growth prediction in a forest tree

Article Publication Date

29-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
EBLN3P Enhances Gastric Cancer Growth and Spread

EBLN3P Enhances Gastric Cancer Growth and Spread

August 28, 2025

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.