• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Huntington’s disease: Astrocytes to the rescue !

Bioengineer by Bioengineer
March 18, 2022
in Biology
Reading Time: 2 mins read
0
Huntington's disease: astrocytes to the rescue!
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Huntington’s disease1 is caused by a mutation in the Huntingtin gene, a protein necessary for the proper functioning of several brain cells. Mutated, it is no longer able to perform properly: it can even become toxic for the neurons, triggering a defence mechanism in the brain. In turn, the astrocytes, the neurons’ support cells, change their behaviour and become “reactive”. These reactive astrocytes were traditionally considered as being deleterious to the brain because they aggravate the symptoms of other brain diseases, such as Alzheimer’s. However, in a recent study published in the journal Brain on 17 March 2022, a research team2, led by a CNRS researcher, revealed that stimulating the formation of reactive astrocytes in mouse models promotes the elimination of the mutated protein by reducing the quantity and size of its aggregates. These results show that reactive astrocytes actually cooperate with neurons in Huntington’s disease. The researchers now want to identify how to selectively stimulate these reactive astrocytes, paving the way for possible treatments.

Huntington's disease: astrocytes to the rescue!

Credit: © Laurene Abjean

Huntington’s disease1 is caused by a mutation in the Huntingtin gene, a protein necessary for the proper functioning of several brain cells. Mutated, it is no longer able to perform properly: it can even become toxic for the neurons, triggering a defence mechanism in the brain. In turn, the astrocytes, the neurons’ support cells, change their behaviour and become “reactive”. These reactive astrocytes were traditionally considered as being deleterious to the brain because they aggravate the symptoms of other brain diseases, such as Alzheimer’s. However, in a recent study published in the journal Brain on 17 March 2022, a research team2, led by a CNRS researcher, revealed that stimulating the formation of reactive astrocytes in mouse models promotes the elimination of the mutated protein by reducing the quantity and size of its aggregates. These results show that reactive astrocytes actually cooperate with neurons in Huntington’s disease. The researchers now want to identify how to selectively stimulate these reactive astrocytes, paving the way for possible treatments.

Notes

1 Huntington’s disease is a rare hereditary disease that induces significant motor, cognitive and psychiatric disorders. It is caused by neuronal degeneration that progressively worsens until the patient dies. To date, there is no known cure.

2 The teams include researchers from the Laboratoire des maladies neurodégénératives : mécanismes, thérapies, imagerie (CNRS/CEA/Université Paris Saclay), the Centre national de recherche en génomique humaine (CEA/Université Paris Saclay) and GenoSplice technology.



Journal

Brain

DOI

10.1093/brain/awac068

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Reactive astrocytes promote proteostasis in Huntington’s disease through the JAK2-STAT3 pathway

Article Publication Date

17-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Adrenergic Receptors: Evolution in Pacific Oysters Uncovered

October 23, 2025
New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025

Tracing the Ancient Mediterranean Roots of the “London Underground Mosquito”

October 23, 2025

Duck-Billed Dinosaur “Mummies” Reveal Preserved Flesh and Hooves Encased in Thin Clay Layers

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.