• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘cryobioprinting’ serves up towers of frozen cells

Bioengineer by Bioengineer
December 30, 2021
in Biology
Reading Time: 3 mins read
0
Cryobioprinting examples
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new technique takes bioprinting — in which an ink of cells is printed, layer by layer, to form a structure — to a whole new, and icy level. Investigators from the Zhang lab at Brigham and Women’s Hospital have developed a technology that they term “cryobioprinting,” a method that uses a bioink embedded with cells to print frozen, complex structures that can be easily stored for later use. The team introduced cryobioprinting in a paper recently published in Matter and further described how to apply the technology to muscular tissue engineering in a paper just published in Advanced Materials.

Cryobioprinting examples

Credit: Credit Y. Shrike Zhang

A new technique takes bioprinting — in which an ink of cells is printed, layer by layer, to form a structure — to a whole new, and icy level. Investigators from the Zhang lab at Brigham and Women’s Hospital have developed a technology that they term “cryobioprinting,” a method that uses a bioink embedded with cells to print frozen, complex structures that can be easily stored for later use. The team introduced cryobioprinting in a paper recently published in Matter and further described how to apply the technology to muscular tissue engineering in a paper just published in Advanced Materials.

“Cryobioprinting can give bioprinted tissue an extended shelf life. We showed up to three months of storage, but it could be much longer,” said Y. Shrike Zhang, PhD, senior author of both papers and an associate bioengineer in the Brigham’s Department of Medicine. “And the unique variation, or what we call the vertical 3D cryobioprinting technique we’ve described, may have broad application in tissue engineering, regenerative medicine, drug discovery and personalized therapeutics.”

Zhang and colleagues used a cryoprotected bioink laden with cells to print tissue constructs on a customized freezing plate. The freezing plate allowed them to precisely control and stabilize temperature during the cryobioprinting procedure. These printed structures were immediately cryopreserved in a liquid nitrogen tank for later use. The team optimized and evaluated the technique, finding that it could faithfully fabricate tissue constructs that could potentially be used as implants and tissue products.

In Advanced Materials, Zhang and co-authors report on using the cryoprotected bioink to create vertical, 3D structures that mimic complex, delicate, and anisotropic tissues found in the human body. Many tissues in the body, including muscles and neurons, are anisotropic, meaning that they have properties that are different in different directions. The structures the researchers created were also anisotropic, with microscale pores aligned in the vertical direction. As a proof-of-concept, the team constructed a muscle-tendon unit using myoblasts (cells that can give rise to muscle cells) and fibroblasts (cells that produce structural frameworks in connective tissue). The team also fabricated a muscle-microvascular unit.

The researchers note that this work represents very early technological demonstrations and will still need extensive validation and tests before use in the clinic, but the two papers represent an important step forward.

“As the field of tissue engineering is growing fast, these fabricated tissue constructs may find a plethora of applications in muscular tissue engineering and beyond,” said Zhang.

Funding: The authors acknowledge support by the Brigham Research Institute. Work was also supported by the FRQNT’s International Internship Award (279390), MITACS Globalink Research Award (IT14553), McGill’s Graduate Mobility Award, McGill’s Doctoral Internship Award, the FRQNT’s Postdoctoral Fellowship (296447), Program of China Scholarship Council (No.201807045057), the High-Level Talent Internationalization Training Program of Henan Province (No.2019004), the National Institute on Deafness and other Communication Disorders (NIDCD) of the National Institutes of Health (NIH) grant numbers R01DC005788 and R01DC014461.

Papers cited:

Ravanbakhsh H et al. “Freeform Cell-Laden Cryobioprinting for Shelf-ready Tissue Fabrication and Storage” Matter DOI: /10.1016/j.matt.2021.11.020

Luo Z et al. “Support Bath-Free Vertical Extrusion Cryo(bio)printing for Anisotropic Tissue Manufacturing” Advanced Materials DOI: 10.1002/adma.202108931

 



Journal

Matter

DOI

10.1016/j.matt.2021.11.020

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Freeform Cell-Laden Cryobioprinting for Shelf-ready Tissue Fabrication and Storage

Article Publication Date

21-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Gender Variations in Pain Response to Cold Stress

Gender Variations in Pain Response to Cold Stress

October 21, 2025
Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

October 20, 2025

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025

Study Reveals Physical Activity Boosts Total Daily Energy Expenditure

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    301 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    117 shares
    Share 47 Tweet 29

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ammonium Molybdate Hydrogel Boosts Photoenergy Harvesting

Unlocking Your Microbiome: The Key to Lifelong Health

Ellagic Acid Protects Heart from Adrenaline Toxicity

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.