• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Primates vs cobras: how our last common ancestor built venom resistance

Bioengineer by Bioengineer
December 7, 2021
in Biology
Reading Time: 3 mins read
0
A/Prof. Bryan Fry
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The last common ancestor of chimps, gorillas and humans developed an increased resistance toward cobra venom, according to University of Queensland-led research.

A/Prof. Bryan Fry

Credit: The University of Queensland

The last common ancestor of chimps, gorillas and humans developed an increased resistance toward cobra venom, according to University of Queensland-led research.

Scientists used animal-free testing techniques to show that African and Asian primates evolved resistance toward the venoms of large, daytime-active cobras and discovered that our last common ancestor with chimps and gorillas evolved even stronger resistance.

University of Queensland PhD candidate Richard Harris said African and Asian primates developed venom resistance after a long evolutionary arms race.

“As primates from Africa gained the ability to walk upright and dispersed throughout Asia, they developed weapons to defend themselves against venomous snakes, this likely sparked an evolutionary arms race and evolving this venom resistance,” Mr Harris said.

“This was just one of many evolutionary defences – many primate groups appear to also have developed excellent eyesight, which is thought to have aided them in detecting and defending themselves against venomous snakes.

“But Madagascan Lemurs and Central and South American monkeys, which live in regions that haven’t been colonised by or come in close contact with neurotoxic venomous snakes, didn’t evolve this kind of resistance to snake venoms and have poorer eyesight.

“It’s been long-theorised that snakes have strongly influenced primate evolution, but we now have additional biological evidence to support this theory.”

The team studied various snake toxin interactions with synthetic nerve receptors, comparing those of primates from Africa and Asia with those from Madagascar – which doesn’t have venomous snakes – and those from the Americas – where the cobra-related coral snakes are small, nocturnal and burrowing.  

Team leader Associate Professor Bryan Fry said the study also revealed that in the last common ancestor of chimpanzees, gorillas, and humans, this resistance was sharply increased.

“Our movement down from the trees and more commonly on land meant more interactions with venomous snakes, thus driving the evolutionary selection of this increased resistance,” Dr Fry said.

“It is important to note that this resistance is not absolute – we are not immune to cobra venom, just much less likely to die than other primates.

“We have shown in other studies that resistance to snake venoms comes with what’s known as a fitness disadvantage, whereby the receptors don’t do their normal function as efficiently, so there is a fine balance to be struck where the gain has to outweigh the loss.

“In this case, partial resistance was enough to gain the evolutionary advantage, but without the fitness disadvantage being too taxing.

“We are increasingly recognising the importance snakes have played in the evolution of primates, including the way our brain is structured, aspects of language and even tool use.

“This work reveals yet another piece in the puzzle of this complex arms race between snakes and primates.”

The research was a collaboration between UQ and Oxford-Brookes University’s Dr Anna Nekaris.

It was published in BMC Biology (DOI: 10.1186/s12915-021-01195-x).



Journal

BMC Biology

DOI

10.1186/s12915-021-01195-x

Article Title

Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras

Share12Tweet7Share2ShareShareShare1

Related Posts

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

November 10, 2025
Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

November 10, 2025

Key Genes Differ in X- and Y-Sperm of Bos indicus

November 10, 2025

NUS Medicine and CHA University Collaborate to Harness AI in Unlocking Novel Solutions for Reversing Male Infertility Decline

November 10, 2025

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Treatment Effects of Patent Ductus Arteriosus in Preemies

Texas Tech Professors Secure $12 Million Grant for Pioneering Data Center and AI Research

Eating Alone Linked to Motor Function in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.