• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Building a human body through gastrulation

Bioengineer by Bioengineer
December 2, 2021
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In their publication in Science, Professor Guojun Sheng (Kumamoto University, Japan), Professor Alfonso Martinez Arias (Universidad Pompeu Fabra, Spain) and Professor Ann Sutherland (University of Virginia Health System, USA) offer a phylogenetic and ontogenetic overview of the primitive streak and its role in mediating amniote (vertebrate animals that develop on land) gastrulation, and discuss the implications of embryonic stem cell-based models of early mammalian embryogenesis on the function of this structure.

Schematic view of how a human embryo acquires spatial coordination of its primary cell fates through gastrulation.

Credit: Dr. Guojun Sheng;
Credit for the “Fetus in the womb” sketch by Leonardo Da Vinci: Royal Collection Trust / © Her Majesty Queen Elizabeth II 2021

In their publication in Science, Professor Guojun Sheng (Kumamoto University, Japan), Professor Alfonso Martinez Arias (Universidad Pompeu Fabra, Spain) and Professor Ann Sutherland (University of Virginia Health System, USA) offer a phylogenetic and ontogenetic overview of the primitive streak and its role in mediating amniote (vertebrate animals that develop on land) gastrulation, and discuss the implications of embryonic stem cell-based models of early mammalian embryogenesis on the function of this structure.

Most animals are bilaterally symmetrical and are organized using two basic coordinate systems. The first gives cells spatial identities along the anteroposterior (head-to-tail) and dorsoventral (back-to-front) axes. The second organizes cells into groups (i.e., germ layers). In most animals, including humans, there are three germ layers: the ectoderm (source of the skin, nervous system, eyes, etc.), the mesoderm (source of the muscles, bones, vessels, etc.) and the endoderm (source of the intestines, lungs, liver, pancreas, etc.). One of the most critical periods of development happens when a small number of pluripotent and dividing cells initiate the differentiation process in these two coordinate systems. In human development, this occurs at approximately two weeks after fertilization through a process called gastrulation and is associated with an embryonic structure called the primitive streak—a structure in early development that initiates bilateral symmetry and germ layer formation. Like water flowing down the side of a mountain, a gastrulating cell embarks on a journal of no return, culminating in its terminal differentiation into one of several hundred cell lineages that make up human tissues and organs.

With technical breakthroughs in rejuvenating differentiated cells back into a naïve state pioneered by scientists like John Gurdon and Shinya Yamanaka (2012 Nobel Prize winners), researchers worldwide are now able to grow pluripotent, pre-gastrulation human (and other mammalian) cells in the lab, and through stepwise addition of biochemical cues, guide these cells to differentiate into any one of hundreds of cell lineages. However, cultivating these cells into functioning tissues or organs has rarely been successful. One reason for this failure is that organogenesis (the process of organ formation) in vivo starts immediately after gastrulation when cells of different germ layer origins and spatial coordinate identities cooperate in making rudimentary organs. Through subsequent reciprocal interactions, these cells undergo organ- and species-specific proliferation, three-dimensional organization, and terminal differentiation before reaching functional maturity. Reproducing (recapitulating) such organ rudiments in vitro therefore has become the holy grail in stem cell biology and regenerative medicine research.

Achieving this would require recapitulation of gastrulation and its associated primitive streak. However, neither gastrulation nor the primitive streak has been rigorously analyzed in human development, and comparative views of animal gastrulation and the primitive streak in the literature are often incorrectly portrayed. Now, though a systematic review of previous research, Prof. Sheng and colleagues provide evidence that the primitive streak is not a conserved feature in amniote development, and that mammalian and avian primitive streaks evolved independently, utilizing different supra-cellular mechanisms that lead to their morphological emergence. The researchers stress that, in addition to mediating the emergence of germ layers from the epiblast (pluripotent cells), the main role of gastrulation is to confer newly formed cells in each germ layer a coordinate system to organize primary cell fates and the primordia of organs and tissues that are relative to each other spatially. Their analyses of different biomechanical parameters between various in vivo and in vitro models predict that a rudimentary mammalian body plan can form in the absence of a primitive streak. They also suggest that the “14-day rule” (where a human embryo cannot be cultured 14 days past fertilization or after the appearance of the primitive streak), which is currently used in many countries as the key ethical oversight in human embryological research, should be re-assessed and an alternative landmark be selected through a consensual discussion between different stakeholders to ensure scientific and ethical rigor.



Journal

Science

DOI

10.1126/science.abg1727

Method of Research

Systematic review

Subject of Research

Human embryos

Article Title

The primitive streak and cellular principles of building an amniote body through gastrulation

Article Publication Date

3-Dec-2021

COI Statement

GS and AS declare no competing interests; AME is an inventor of two patent applications (PCT/GB2019/052668 and PCT/GB2019/052670) held by The University of Cambridge that cover the generation of mouse and human gastruloids.

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

Drumming in Mongolian Gerbils: Context or Arousal?

September 1, 2025

Seasonal Brain Shrinkage in Shrews Caused by Water Loss, Not Cell Death

September 1, 2025

Lower IGF1 Levels in Preeclampsia Affect Trophoblasts

September 1, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.