• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Universal traits spotted in early evolution of sex chromosomes

Bioengineer by Bioengineer
November 13, 2021
in Biology
Reading Time: 3 mins read
0
Evolution of sex chromosomes
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have identified unifying features in the early evolution of X and Y chromosomes. Newly evolved sex chromosomes in three different fruit fly species showed the same genetic compensation mechanism found in other organisms. They also found common deterioration in both X and Y, plus key similarities between sex chromosomes derived from the same non-sex chromosome. The team’s insights point to universal traits in sex chromosome evolution in nature.

Evolution of sex chromosomes

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have identified unifying features in the early evolution of X and Y chromosomes. Newly evolved sex chromosomes in three different fruit fly species showed the same genetic compensation mechanism found in other organisms. They also found common deterioration in both X and Y, plus key similarities between sex chromosomes derived from the same non-sex chromosome. The team’s insights point to universal traits in sex chromosome evolution in nature.

 

Chromosomes are long winding DNA molecules containing all of an organism’s genes. Different chromosomes contain different parts of a complete genetic code, all important in different ways. In the evolution of some animals, including humans, two of these chromosomes, dubbed “X” and “Y”, can pick up certain genes and take on the role of determining how sexual characteristics develop. These are called allosomes or sex chromosomes.

 

As sex determination sets in along an evolutionary pathway, it becomes unfavorable for sex chromosomes to undergo major changes. Unfortunately, the Y chromosome is prone to a process called pseudogenization, where its genes lose function; compared to the 1000 or so genes in the X chromosome, the Y chromosome in humans has only a few dozen functional genes left. That means that male offspring, with a single X and Y chromosome, have only a single copy of the vast array of vital genes in X, while females, with two X chromosomes, have a backup. So how does the XY pairing manage to get by? In seminal work by Muller in the 30s and Ohno in the 60s, it was found that the X chromosome in males works overtime, in a process known as dosage compensation (DC). But it remains unclear how this kind of process evolved. Given how widely sex determination is seen in nature, any clues promise new insights into the intricate mechanics behind evolution.

 

In a bid to study DC, a team led by Associate Professor Masafumi Nozawa and Professor Koichiro Tamura of Tokyo Metropolitan University have been studying chromosomes in Drosophila fruit flies. It so happens that in a few species, sex chromosomes were evolved within the last million years. That’s quite recent by evolutionary standards! What this provides is a rare glimpse into the early evolution of sex chromosomes, particularly how pseudogenization is progressing in these “neo-X” and “neo-Y” chromosomes.

 

By comparing three different species with neo-X and neo-Y and those without, the team found a startling range of common traits. Firstly, they confirmed that neo-Y was already losing genes, and that this was being made up for by an elevation in the activity of those in neo-X. In fact, it turns out that both are being pseudogenized at an accelerated rate compared to their non-sex counterparts, though genes found strongly expressed in the ovaries and testes were still preserved in neo-X and neo-Y respectively. Furthermore, for two species with neo-Y chromosomes derived from the same non-sex chromosome, they found that the same genes were being pseudogenized i.e. evolution was happening in parallel in different species.

 

The range of similarities found by the team point to universality in how sex chromosomes evolve, offering insights into the evolutionary mechanics of a wider range of organisms.

 

This work was supported by JSPS KAKENHI Grant Numbers JP25711023, JP15K14585, JP17H05015, JP221S0002, and JP16H06279 from the Japan Society for the Promotion of Science (JSPS) and the Genome Information Upgrading Program of the National BioResource Project (NBRP) .

 



Journal

Genome Research

DOI

10.1101/gr.275503.121

Article Title

Shared evolutionary trajectories of three independent neo-sex chromosomes in Drosophila

Article Publication Date

21-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Allen Institute Unveils 2025 Next Generation Science Leaders

Allen Institute Unveils 2025 Next Generation Science Leaders

November 4, 2025
MBD Gene Family in Broomcorn Millet: Stress Response Analysis

MBD Gene Family in Broomcorn Millet: Stress Response Analysis

November 4, 2025

Cutting-Edge Molecular Dynamics Simulations Achieve Remarkable Precision in RNA Folding Studies

November 4, 2025

Unveiling Herpesvirus Helicase–Primase and Drug Targets

November 4, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Taft Armandroff and Brian Schmidt Appointed as Leaders of the Giant Magellan Telescope Board of Directors

Genomic Subtypes Predict HER2 Therapy Success

Enhancing V4+ Stability in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.