• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cells do not (only) play dice

Bioengineer by Bioengineer
November 8, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Stem cells are true multi-talents. They can develop into any cell type of an organism – in humans there are over 200 – and thus perform all vital tasks. Once the stem cells have decided on a task they can no longer  be deterred from their goal. The final product, tissues and organs, almost always look the same and consist of defined proportions of different specialised cell types. But how do the cells actually know what they want to become and how many of them are actually allowed to do so?

Stem Cells do not play dice (only)

Credit: MPI of Molecular Physiology

Stem cells are true multi-talents. They can develop into any cell type of an organism – in humans there are over 200 – and thus perform all vital tasks. Once the stem cells have decided on a task they can no longer  be deterred from their goal. The final product, tissues and organs, almost always look the same and consist of defined proportions of different specialised cell types. But how do the cells actually know what they want to become and how many of them are actually allowed to do so?

Is it all just chance?

An important regulator of the distribution of tasks is the control of genes by transcription factors such as NANOG and GATA, which are both initially present in the undifferentiated stem cells. This changes fundamentally, however, in the very early development when the stem cells develop into two new cell types: Cells of the early embryo, in which now only NANOG is present and precursor cells of the fruit bladder which now exclusively carry GATA. Until now, it was thought that the decision of each individual cell was made rather randomly at an early stage, similar to a dice game, except that here only NANOG or GATA can be rolled.

Cells decide collectively

In a previous theoretical paper, Aneta Koseska, co-author of the study and former MPI group leader, was able to establish a new concept with the help of Christian Schröter, showing how stem cells specialize in right proportions in a coordinated manner. In the current publication, Christian Schröter and his team have now succeeded in substantiating the theoretical concept. Using stem cells in a test tube, the researchers were able to show that decision-making does not take place purely randomly at the level of individual cells, as previously assumed, but is communicated within the cell community.

Cheating at the stem cell dice game

In order not to leave the fate of the cells to chance, the researchers manipulated the NANOG-GATA dice in their investigations so that GATA is now rolled more often than NANOG. This was achieved experimentally by artificially increasing the amount of GATA. Even though a six was always rolled – i.e. GATA – the number of fruit bladder precursor cells could not be arbitrarily increased, but similar proportions of the two different cell types continued to emerge. The distribution of tasks during development must therefore be dependent on more than mere chance.

 

Decisions are communicated in the team

Following their theoretical concept, the scientists investigated the role of cellular communication in embryonic development. As a central means of communication cells use messenger substances such as growth factors, which they produce and secrete themselves. These substances are then received by other cells and control their specialization. If the researchers took away a growth factor that was important for cell development, the cells were no longer able to develop into fruit bladder precursor cells even in the presence of high amounts of GATA. However, the more of the growth factor the cells received, the more fruit bladder precursor cells also developed. Their ability to divide into the right proportions of the two cell types despite disturbances was thus lost. Stem cells must therefore communicate with each other in order to make the right decision.

“Communication in cell development is like working in a team. If the members choose tasks without consulting each other, some things are done twice and others not at all. A team that communicates well, on the other hand, can solve problems that arise and complete even complex projects reliably and efficiently”, Christian Schröter says. “So it’s not just the state of the individual cell that decides on its faith, but the functioning communication with the other cells.”



Journal

Development

DOI

https://doi.org/10.1242/dev.199926

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Cell-cell communication through FGF4 generates and maintains robust proportions of differentiated cell types in embryonic stem cells

Article Publication Date

5-Nov-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Tiny Fossils Reveal Major Insights into Arthropod Evolution

Tiny Fossils Reveal Major Insights into Arthropod Evolution

August 28, 2025
MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

August 28, 2025

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025

Lipid Metabolism Key to Oat’s Heat Stress Response

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Polyolefin Separator Boosts Lithium Metal Battery Performance

Farm Subsidies Boost Fertilizer Use, Maize Yields in Malawi

Advancements in HSP90 Inhibitors: Structure-Activity Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.