• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Samara Polytech participates in the creation of new catalysts

Bioengineer by Bioengineer
July 20, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of Russian scientists has identified the vectors of world research

IMAGE

Credit: @SamaraPolytech

The concept of creating new functional materials and catalysts for the needs of oil refining and petrochemistry, as well as hydrogen energy is proposed. The work is carried out by the specialists from National University of Oil and Gas “Gubkin University” in collaboration with the colleagues from the Moscow State University named after M.V. Lomonosov and Samara Polytech (represented by Alexey Pimerzin, Associate Professor of the Department of Chemical Technology of Oil and Gas Processing). The new approach is based on the use of natural clay nanotubes with unique properties and, at the same time, similar to traditional synthetic analogues used in industry. The results of the study were published in the Chemical Society Reviews journal (DOI: https://doi.org/10.1039/D1CS00502B), the work was supported by a grant from the Russian Science Foundation (RSF) (https://rscf.ru/project/19-79-10016/ ).

Catalysts are substances that speed up chemical reactions and make processes more efficient. In the oil industry, catalysts are used for the deep processing of hydrocarbons, the production of motor fuels and petrochemical products.

Traditional catalysts for hydro-processes, which are carried out in the presence of hydrogen, as a rule, consist of synthetic materials – aluminosilicates, in particular. These compounds are formed by atoms of aluminum, silicon and oxygen. At the stage of synthesis, it is possible to change their properties depending on the final goals. However, synthetic aluminosilicates have one drawback: they are difficult and expensive to manufacture.

And here halloysite comes to the rescue that is a clay aluminosilicate mineral in the form of nanotubes. It is noteworthy that the outer surface of these tubes consists of silicon oxide (negatively charged), and the inner surface – of aluminum oxide (positively charged). This unique structure makes it possible to modify halloysite in a targeted manner, setting the necessary characteristics of new catalysts based on it.

“Halloysite is a natural aluminosilicate, which is, in fact, a fossil functional material that nature gave us, and we just figured out how to use this unique gift”, Alexander Glotov, the project manager of the Russian Science Foundation grant, a leading researcher of National University of Oil and Gas “Gubkin University” said.

At present, large deposits of halloysite are found in the USA, Australia, New Zealand, China, and in Russia the mineral has been found in the Urals. Some companies sell pure aluminosilicate nanotubes in large quantities at low prices. This means that it is already possible to use halloysite on an industrial scale.

Scientists analyzed information about world research, including their own works in the field of creating new catalysts from halloysite. They described in detail the influence of structure and textural characteristics on the activity of catalysts in key petrochemical and refining processes carried out under hydrogen pressure. Particular attention was paid to the methods of directed synthesis of systems with given characteristics, in particular, composite mesoporous materials with a high specific surface area, thermal and mechanical stability, controlled acidity.

Within the suggested concept of “nanoreactors”, scientists considered methods of selective metal deposition: either inside the tubes or on their outer surface. This makes it possible to control the properties of the obtained functional materials and catalysts and to increase their service life.

“A separate chapter of our review is devoted to the research on the removal of pollutants, as well as the creation of hydrogen accumulators. The development of the work in this area will significantly bring society closer to solving the problems of storing and releasing hydrogen – an environmentally friendly fuel of the future”, Alexander Glotov noted.

Scientists’ recommendations can become the foundation for the development of world and national research in the development of highly active, stable and cheap catalysts for hydro-processes of petrochemistry and oil refining, production, transportation and storage of hydrogen, purification of atmospheric and exhaust gases.

###

For reference:

Samara Polytech as a flagship university offers a wide range of education and research programs and aims at development and transfer of high-quality and practically-oriented knowledge. The university has an established reputation in technical developments and focuses on quality education, scientific and pragmatic research, combining theory and practice in the leading regional businesses and enterprises. Education is conducted in 30 integrated groups of specialties and areas of training (about 200 degree programs including bachelor, master programs and 55 PhD programs) such as oil and gas, chemistry and petrochemistry, mechanics and energy, transportation, food production, defense, IT, mechanical and automotive engineering, engineering systems administration and automation, material science and metallurgy, biotechnology, industrial ecology, architecture, civil engineering and design, etc.

Media Contact
Roman Naumov
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/D1CS00502B

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.