• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bonding’s next top model — Projecting bond properties with machine learning

Bioengineer by Bioengineer
July 19, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Institute of Industrial Science, the University of Tokyo

Tokyo, Japan – Designing materials that have the necessary properties to fulfill specific functions is a challenge faced by researchers working in areas from catalysis to solar cells. To speed up development processes, modeling approaches can be used to predict information to guide refinements. Researchers from The University of Tokyo Institute of Industrial Science have developed a machine learning model to determine characteristics of bonded and adsorbed materials based on parameters of the individual components. Their findings are published in Applied Physics Express.

Factors such as the length and strength of bonds in materials play crucial roles in determining the structures and properties we experience on the macroscopic scale. The ability to easily predict these characteristics is therefore valuable when designing new materials.

The density of states (DOS) is a parameter that can be calculated for individual atoms, molecules, and materials. Put simply, it describes the options available to the electrons that arrange themselves in a material. A modeling approach that can take this information for selected components and produce useful data for the desired product–with no need to make and analyze the material–is an attractive tool.

The researchers used a machine learning approach–where the model refines its response without human intervention–to predict four different properties of products from the DOS information of the individual components. Although the DOS has been used as a descriptor to establish single parameters before, this is the first time multiple different properties have been predicted.

“We were able to quantitatively predict the binding energy, bond length, number of covalent electrons, and the Fermi energy after bonding for three different general types of system,” explains study first author Eiki Suzuki. “And our predictions were very accurate across all of the properties.”

Because the calculation of DOS of an isolated state is less complex than for bonded systems, the analysis is relatively efficient. In addition, the neural network model used performed well even when only 20% of the dataset was used for training.

“A significant advantage of our model is that it is general and can be applied to a wide variety of systems,” study corresponding author Teruyasu Mizoguchi explains. “We believe that our findings could make a significant contribution to numerous development processes, for example in catalysis, and could be particularly useful in newer research areas such as nano clusters and nanowires.”

###

The article, “Accurate Prediction of Bonding Properties by a Machine Learning-based Model using Isolated States Before Bonding”, was published in Applied Physics Express at DOI: 10.35848/1882-0786/ac083b.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,200 members including approximately 400 staff and 800 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Media Contact
Teruyasu Mizoguchi
[email protected]

Original Source

https://www.iis.u-tokyo.ac.jp/en/news/3607/

Related Journal Article

http://dx.doi.org/10.35848/1882-0786/ac083b

Tags: Algorithms/ModelsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsMaterialsNanotechnology/MicromachinesResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adverse Events in Asian Adults on Brivaracetam

Tumor Microenvironment Dynamics in Breast Cancer Therapy

Extraction Methods Impact Idesia Polycarpa Oil Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.