• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New long-term satellite analysis shows “plum” rainy season wetter now than ever before

Bioengineer by Bioengineer
July 17, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Meiyu-Baiu fronts in the most recent decade the wettest on record

IMAGE

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have analyzed long-term precipitation radar data from satellites and found significantly enhanced rainfall over the most recent decade during the annual Meiyu-Baiu rainy season in East Asia. The data spans 23 years and gives unprecedented insight into how rainfall patterns have changed. They showed that the increased rainfall was driven by the decadal increased transport of moisture from the tropics and frequent occurrence of the upper tropospheric trough over the front.

From the second half of June to the first half of July every year, East Asia is subject to a particularly rainy spell known as the Meiyu (in China) or Baiu (in Japan) season or “plum rains,” from the ripening of plums along the Yangtze River. They are triggered by the so-called Meiyu-Baiu front, where the flow of moist air around the Asian monsoon region meets anti-cyclonic flows around the rim of the western North Pacific subtropical high (WNPSH). Though they bring much needed water to the region, recently, it seems that the floods they trigger have taken a deadly turn, with widespread destruction; flooding in China and Japan in 2020 was particularly devastating. For scientists and policymakers, it is vital that this be put within the framework of a bigger picture: are these simply anomalies, or are they here to stay?

Though studied in much depth, the majority of studies use rainfall gauge measurements and observations of cloud activity around land. An overall picture of rainfall throughout the region was lacking, particularly analyses which spanned long periods of time. Now, a team led by Assistant Professor Hiroshi Takahashi have examined satellite data featuring radar measurements of precipitation. They combined two sets of data, the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement Mission (GPM). The full set of data spans 23 years and covers both the sea and the land with equal precision. Through careful analysis of the time series, they confirmed a significant elevation in rainfall over the past decade. In particular, they showed that there has been a clear increase in the number of extreme precipitation events, the kind that can trigger natural disasters.

The question is why it has changed. The team focused on two aspects of the development of rainfall, the transport of moisture and changes in the flow of air in the upper troposphere. Firstly, they showed that there has been increased transport of water vapor along the rim of the WNPSH, largely due to decreased tropical cyclone activity, a trend seen both in decade-to-decade comparisons and the devastating season of 2020. Furthermore, they showed there were anomalous circulations in the upper troposphere, creating a “trough” that drove air upwards around the western edge of the Meiyu-Baiu front, strongly correlated with enhanced rainfall.

Through a full analysis of data encompassing a far larger area and a longer time span than before, the team’s findings put the recent changes in the Meiyu-Baiu season in East Asia within the framework of a globally changing climate. They hope that new standards for average rainfall are reflected in new standards of disaster prevention.

###

This work was supported by a KAKENHI Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) (No. 19H01375), the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (Grant No. JPMEERF20192004), and the Japan Aerospace Exploration Agency/Earth Observation Research Center (PI No. ER2GPF012).

Media Contact
Go Totsukawa
[email protected]

Original Source

https://doi.org/10.1038/s41598-021-93006-0

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-93006-0

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEarth ScienceHydrology/Water ResourcesTemperature-Dependent PhenomenaWeather/Storms
Share14Tweet9Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.