• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study shows that electronic air cleaning technology can generate unintended pollutants

Bioengineer by Bioengineer
July 16, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Georgia Institute of Technology

As the Covid-19 pandemic raged, news reports show that sales of electronic air cleaners have surged due to concerns about airborne disease transmission. But a research team at the Georgia Institute of Technology has found that the benefits to indoor air quality of one type of purifying system can be offset by the generation of other pollutants that are harmful to health.

Led by Associate Professor Nga Lee “Sally” Ng in Georgia Tech’s School of Chemical and Biomolecular Engineering and the School of Earth and Atmospheric Sciences, the team evaluated the effect of a hydroxyl radical generator in an office setting. Hydroxyl radicals react with odors and pollutants, decomposing them, and hydroxyl radical generators have been marketed to inactivate pathogens such as coronaviruses.

However, Ng’s study found that in the process of cleaning the air, the hydroxyl radicals generated by the device reacted with volatile organic compounds present in the indoor space. This led to chemical reactions that quickly formed organic acids and secondary organic aerosols that can cause health problems. Secondary organic aerosols is a major component of PM2.5 (particulate matter with a diameter smaller than 2.5 ?m), and exposure to PM2.5 has been associated with cardiopulmonary diseases and millions of deaths per year.

The paper, “Formation of oxidized gases and secondary organic aerosol from a commercial oxidant-generating electronic air cleaner,” is published in the journal Environmental Science and Technology Letters.

While the pandemic has made various types of electronic cleaners increasingly popular, Ng explained that consumers are probably not aware of the secondary chemistry taking place in the air, with the pollutants generated not being directly emitted by the cleaning device itself.

“There are increasing concerns regarding the use of electronic air cleaners as these devices can potentially generate unintended byproducts via oxidation chemistry similar to that in the atmosphere,” Ng said.

Two types of air cleaning technologies are commonly used to remove indoor pollutants such as particles or volatile organic compounds and to inactivate pathogens: mechanical filtration and electronic air cleaners that generate ions, reactive species, or other chemical products such as photocatalytic oxidation, plasma, and oxidant-generating equipment (e.g., ozone, hydroxyl radical), among others.

Ng’s team selected a hydroxyl generator for the study. They measured the oxygenated volatile organic compounds and the chemical composition of particles generated by the device in an office on the Georgia Tech campus.

While previous research reported pollutant formation from various electronic air cleaners (ionizers, plasma systems, photocatalytic systems with ultraviolet lamps, etc.), Ng believes that her team’s study is the first to monitor the chemical composition of secondary pollutants in both gas and particle phases during the operation of an electronic device that dissipates oxidants in a real-world setting.

Advanced instrumentation made Ng’s study possible. Gas-phase organic compounds were measured using a high-resolution time-of-flight chemical ionization mass spectrometer, purchased through a National Science Foundation major instrumentation grant. The study received support from Georgia Tech’s Covid-19 Rapid Response fund.

Ng noted that future studies on air cleaning technology should not be limited to inactivation of viruses or reduction of volatile organic compounds, but should also evaluate potential oxidation chemistry and the formation of unintended harmful gaseous and particulate chemicals.

“More studies need to be conducted on the effects of these devices in a variety of environments,” Ng said.

“Electronic air cleaners greatly rose in prominence because of the pandemic, and now there are a lot of these devices out there. Millions of dollars are being spent on these devices by businesses and schools. The market is huge.

“Our results show that care must be taken when choosing an adequate and appropriate air cleaning technology for a particular environment and task,” she said.

Ng stressed the importance of future studies concerning the unintended effects of electronic purifiers, as these devices are not currently well regulated and do not have testing standards.

“There needs to be more peer-reviewed scientific data on electronic air cleaners,” Ng said. “We hope that additional studies will lead to more government guidelines and regulation.”

###

CITATION: Joo et al., “Formation of oxidized gases and secondary organic aerosol from a commercial oxidant-generating electronic air cleaner.” (Environmental Science & Technology Letters)
https://pubs.acs.org/doi/10.1021/acs.estlett.1c00416

About the Georgia Institute of Technology

The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition.

The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning.

As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

Media Contact
Jason Maderer
[email protected]

Original Source

https://www.news.gatech.edu/2021/07/14/study-shows-electronic-air-cleaning-technology-can-generate-unintended-pollutants

Related Journal Article

http://dx.doi.org/10.1021/acs.estlett.1c00416

Tags: Atmospheric ChemistryBiochemistryChemistry/Physics/Materials SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Disease Risk in Older Non-Communicable Patients

Assessing Resilience and Evolution of Yellow River Water Resources

Brahmi Boosts Dendritic Cells to Combat NSCLC

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.