• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Autophagy may be the key to finding treatments for early Huntington’s disease

Bioengineer by Bioengineer
July 15, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Autophagy disruption may be at the root of early cognitive changes in Huntington’s disease and is a potential target for disease-modifying therapies, report scientists in the Journal of Huntington’s Disease

IMAGE

Credit: Journal of Huntington’s Disease

Amsterdam, July 15, 2021 – Huntington’s Disease (HD) is a progressive neurodegenerative condition characterized by motor, cognitive, and psychiatric symptoms, and motor symptoms are often preceded by cognitive changes. Recent evidence indicates that autophagy plays a central role in synaptic maintenance, and the disruption in autophagy may be at the root of these early cognitive changes. Understanding this mechanism better may help researchers develop treatments for patients with HD early in their disease progression, report scientists in a review article published in the Journal of Huntington’s Disease.

In this review, experts describe how autophagy, the cellular process responsible for clearing old or damaged parts of the cell, plays a critical role supporting synaptic maintenance in the healthy brain, and how autophagy dysfunction in HD may thereby lead to impaired synaptic maintenance and thus early manifestations of disease. The line of research discussed in this review represents a previously unexplored avenue for identifying potential disease-modifying therapies for HD.

“Like many neurodegenerative conditions affecting primarily cognition, such as Alzheimer’s disease, preclinical and clinical data indicate that synapses, the part of brain cells responsible for communication between cells, are affected early in HD,” explained Hilary Grosso Jasutkar, MD, PhD, Department of Neurology, Columbia University, and Ai Yamamoto, PhD, Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA. “We have long thought that autophagy played a role in the pathophysiology of HD, but what this role is has been unclear until recently. Recent evidence indicates that autophagy may be important in maintaining the synapse. This line of research has the potential to lead to identification of a drug target to treat HD early in the disease process.”

The authors first explore how cognitive dysfunction is an early manifestation of HD, and that similarly to other neurodegenerative diseases that primarily affect cognition, such as Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, early deficits in synaptic function may underlie these cognitive symptoms. Next, they review the growing evidence that the lysosome-mediated degradation pathway autophagy plays a central role in synaptic maintenance, and how the disruption in autophagy may contribute to early cognitive changes in HD.

The authors conclude that there are pathologic and imaging data in individuals with mutations in the Huntingtin protein (mHtt), as well as evidence from animal models with HD, that suggest that synapse dysfunction may occur early in HD, prior to cell death.

“Autophagy plays a specialized role in the maintenance and function of the synapse, and mHtt may disrupt this function, leading to the early synaptic changes seen in HD patients and model systems,” explained Dr. Grosso Jasutkar. “These synaptic changes may then manifest as impairments in synaptic plasticity and thus cognitive changes early in the disease course. Given that neurons rely on synaptic input and feedback for cell health, it is possible that this disruption in synaptic signaling in and of itself contributes to cell death in HD.”

“There is much work yet to be done in this field,” added Dr. Yamamoto. “Although various groups have demonstrated individual components of this pathway, a direct causal relationship of mutant Htt leading to synaptic dysfunction and, in turn, cognitive impairments, has yet to be demonstrated.”

“If the model described here is borne out, therapeutics aimed at enhancing the efficiency of synaptic autophagy early in the course of HD could be protective against early cognitive changes and potentially degeneration itself,” concluded the authors.

HD is a fatal genetic neurodegenerative disease that causes the progressive breakdown of nerve cells in the brain. An estimated 250,000 people in the United States are either diagnosed with, or at risk for, the disease. Symptoms include personality changes, mood swings and depression, forgetfulness and impaired judgment, unsteady gait, and involuntary movements (chorea). Every child of an HD parent has a 50% chance of inheriting the gene. Patients typically survive 10-20 years after diagnosis.

###

Media Contact
Diana Murray
[email protected]

Related Journal Article

http://dx.doi.org/10.3233/JHD-200466

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionizing Parkinson’s Treatment with PLGA Carriers

August 20, 2025
Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

August 20, 2025

N6-Methyladenosine’s Role in Prostate Cancer Progression

August 20, 2025

New Research Reveals Biological Factors Behind Daytime Sleepiness

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Parkinson’s Treatment with PLGA Carriers

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.