• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 29, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study shows laboratory developed protein spikes consistent with COVID-19 virus

Bioengineer by Bioengineer
July 6, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Southampton

A new international study has found that the key properties of the spikes of SARS-CoV-2 virus which causes COVID-19 are consistent with those of several laboratory-developed protein spikes, designed to mimic the infectious virus.

A central component in designing serological tests and vaccines to protect against COVID-19 is the manufacture of protein “spikes”. These recombinant spikes closely mimic those sticking out of surface of the infectious virus and trigger the body’s immune system into action.

Laboratory manufactured spikes are also used for serological testing (also referred to as antibody testing) and as research reagents. The findings show how that viral spike manufactured through different methods in laboratories across the globe are highly similar and provide reassurance that the spike can be robustly manufactured with minimal variations between laboratories.

The spikes on the SARS-CoV-2 virus are coated in sugars, known as glycans, which they use to disguise themselves from the human immune system. The abundance of these glycans has the potential to create significant discrepancies between studies that use different recombinant spikes.

In this new study, published in the journal Biochemistry, the research team studied the glycan coatings on recombinant spikes developed in five laboratories around the world and compared them to those on the spikes of the infectious virus.

“The speed at which scientific community has moved to tackle the COVID-19 pandemic has put considerable pressure on laboratories around the world to validate their findings quickly,” Explained Max Crispin, Professor of Glycobiology at the University of Southampton, who led the study. “Over the last year we have seen vaccines developed around the world at an unprecedented rate and the rapid development, and validation, of recombinant proteins have been fundamental to that success story,” he continued.

In April 2020, Professor Crispin and his team from the University of Southampton mapped the glycan coating of the SARS-CoV-2 spike for the first time. In the present study, they extend their analysis to examine recombinant spike developed in laboratories at the Amsterdam University Medical Centre, Harvard Medical School, the University of Oxford, and the Swiss company ExcellGene. All the different batches of spike protein were shown to mimic key features of the glycosylation of virions analysed at Tsinghua University, China.

The study also used computational methods to examine the protein features that were shaping some of the glycosylation features that were seen across all the samples. Dr. Peter Bond, Senior Principal Investigator at the Bioinformatics Institute of the Agency for Science, Technology and Research (A*STAR), Singapore, who led the computational work said, “Our modelling enabled us to shed light on how the protein influences the structure of the glycans and why the glycosylation was so consistent. This predictive approach could also be of potential value in therapeutics development against new variants or other emerging viruses.”

“The ability to produce mimics of the SARS-CoV-2 spike protein with high fidelity at many different laboratories, all of which recapitulate the glycan signatures of the authentic virus, is of significant benefit for vaccine design, antibody testing and drug discovery” concluded Professor Crispin.

###

Media Contact
Steve Bates
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.biochem.1c00279

Tags: BiologyCell BiologyGeneticsImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMicrobiologyPulmonary/Respiratory MedicineVaccinesVirology
Share13Tweet8Share2ShareShareShare2

Related Posts

Factors Influencing Caregiver Turnover in Japan

January 29, 2026

Bionano Mapping Reveals Complexities of Chromosomal Duplications

January 29, 2026

Postmortem CT vs. Autopsy: Fracture Detection Compared

January 29, 2026

Cambrian Soft-Bodied Life Post-Phanerozoic Extinction

January 29, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    157 shares
    Share 63 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    149 shares
    Share 60 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    80 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    62 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Factors Influencing Caregiver Turnover in Japan

Prethermalization via Random Multipolar Driving on 78 Qubits

3D Micro-Trench Imaging via Fourier Ptychographic Interferometry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 72 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.