• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Beckman neuroscientists uncover neuronal circuitry controlling auditory sensory perception

Bioengineer by Bioengineer
June 29, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of neuroscientists at the Beckman Institute for Advanced Science and Technology discovered a new neuronal circuit that may help control which sensory information is relayed to the auditory cortex

IMAGE

Credit: University of Illinois Urbana-Champaign

A team of neuroscientists at the Beckman Institute for Advanced Science and Technology led by Baher Ibrahim and Dr. Daniel Llano published a study in eLife that furthers our understanding of how the brain perceives everyday sensory inputs.

“There is a traditional idea that the way that we experience the world is sort of like a movie being played on a projector. All the sensory information that is coming in is being played on our cerebral cortex and that’s how we see things and hear things,” said Llano, a Beckman researcher and associate professor in the Department of Molecular and Integrative Physiology at the University of Illinois Urbana-Champaign.

However, quite a few studies over the years have challenged this traditional view of how we perceive the world. These studies present a new model: rather than projecting information onto the cortex, the thalamus might be selecting information that is already present in the cortex, based on our learned experiences.

Using a unique mouse brain slice that retains connectivity between three different regions of the brain (midbrain, thalamus, and cortex), Ibrahim and colleagues conducted a series of experiments that involved complicated techniques like electrophysiology, optogenetics, and computer modeling.

Ibrahim discerned that the neurons controlling which signals are relayed to the cortex are cortico-thalamic neurons that act through the thalamic reticular nucleus. These neurons descend from the cortex to the thalamus, making up a population of neurons that is not often talked about, but is nevertheless responsible for controlling what information is relayed to the cortex.

The implications of this research are far-reaching. It is possible to discern from this study that, amongst a veritable sea of sensory inputs, the brain uses these cortico-thalamic neurons to select which sensory inputs to relay up to the cortex via a “non-linear response.” This results in humans paying attention to only those sensory inputs that are being relayed to the cortex. Hence, this publication brings to light the neuronal circuitry that is involved in perception-specific sensory information.

“Prior to us doing this particular study, other studies were showing the presence of these non-linear responses in the cortex in other sensory systems, like the visual system. Therefore, I suspect that what we discovered in the auditory system might be a generic mechanism that would be seen across sensory systems with the exception of olfaction,” said Llano.

“Learning how to perform all these techniques correctly and efficiently to get reliable data was the most challenging part of this study,” added Ibrahim.

Ibrahim, a postdoctoral research associate in Llano’s lab, came from a pharmacological scientific background and was not previously trained in performing electrophysiological techniques. This posed unique challenges.

The study ultimately begs the question as to whether everyday sensory perception is a mixture of the internal models of the world that our brain is selecting based on cognitive demand and the input streams flowing from the outside world. This would be a very different way of understanding sensory perception as opposed to what is traditionally taught. Clarity of such concepts is fundamental to understanding situations where these processes of perceptions go awry, namely hallucinations.

The Beckman Institute’s recent acquisition of a state-of-the-art multiphoton microscope renders a wide array of possibilities for moving this study forward. This microscope will allow scientists to image the living brain at the cellular level. This will allow Llano and colleagues to study the cerebral cortex of living animals at the cellular level, further allowing them to study hundreds of neurons at a time, and silence specific subpopulations of neurons and see how the responses change.

This study is another step towards understanding the infinitely complex organ that is our brain.

###

Editor’s notes:

To reach Dan Llano, call 217-244-0740 or email [email protected]

To reach Baher Ibrahim, call 318-680-6962 or email
[email protected]

The paper “Corticothalamic gating of population auditory thalamocortical transmission in mouse” is available online at https://elifesciences.org/articles/56645

Media Contact
Jenna Kurtzweil
[email protected]

Original Source

https://beckman.illinois.edu/about/news/article/2021/06/23/beckman-neuroscientists-uncover-new-neuronal-circuitry-that-controls-auditory-sensory-perception

Related Journal Article

http://dx.doi.org/10.7554/eLife.56645

Tags: BiologyMolecular BiologyneurobiologyNeurochemistryPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Creating New C-C Backbone Polymers with Densely Packed Cyclic Units

August 25, 2025
Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

Revolutionary Advances in Indole Chemistry Promise to Speed Up Drug Development

August 25, 2025

Scientists Create Molecule Advancing Key Step in Artificial Photosynthesis

August 25, 2025

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Tool “LKNet” Establishes New Benchmark for Precise Rice Panicle Counting Across Growth Stages

Breakthrough in Creating New C-C Backbone Polymers with Densely Packed Cyclic Units

Virtual Reality Enhances Precision in 3D Reconstruction of Root Systems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.