• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Compost improves apple orchard sustainability

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As the saying goes, an apple a day keeps the doctor away. But what’s the key to growing a quality apple?

Apple trees need access to important nutrients, which come from the soil. However, soil is quite different from orchard to orchard.

Gregory Peck studies how sustainable orchard practices can improve the availability of nutrients. The research was recently shared in Soil Science Society of America Journal, a publication of the Soil Science Society of America.

Farmers are becoming more aware of the environmental impacts of different orchard management practices.

“Apple growers are interested in developing more sustainable nutrient management plans,” explains Peck. “They are asking for more information to improve the soil health on their farms.”

A healthy soil depends on many factors. One of those factors is the microbial community living in the soil. The community is made up of bacteria, nematodes, and fungi. Some of these microbes convert nutrients in the soil into forms that apple trees can use.

In the soil, microbes and plant roots interact in beneficial partnerships. Plants, like apple trees, release fluids from their roots into the soil. These fluids serve as a food source for the microbial community. In return, the microbes can help the apple trees.

“Bacteria serve many functions in an apple orchard soil,” says Peck. “They recycle nutrients, promote plant growth, and even alter plant metabolisms.”

In this study, the team applied composts – such as chicken litter and yard waste – to apple orchards.

Researchers found that adding compost increased the number of soil bacteria associated with recycling nutrients. The compost provides additional food for the bacteria to help them thrive.

This larger microbial community means more nutrients are available to the apple trees.

By applying compost, farmers could reduce the amount of fertilizer needed to provide nutrients for apple trees. This could help their pocketbooks and the environment.

Some fertilizers come from non-renewable sources. Adding in compost to a farm’s nutrient management plan reduces the dependence on those sources. It also provides a sustainable use for materials otherwise considered to be waste.

On a practical level, this research shows that farmers can successfully integrate compost with quicker release fertilizer sources.

“Although sustainable apple production is not defined by a single practice, we think this research contributes to the long-term goal of increasing farm sustainability,” says Peck.

In the future, the team hopes to replicate this study in different regions with different soil characteristics. They would also like to take a deeper look into the roles of fungi in the microbial community of orchard soils.

“We can produce great apples, and apple orchard farmers can supply a huge population with delicious, nutritious food,” Peck adds.

###

Gregory Peck is a researcher at Cornell University. This work was supported by Cornell University – College of Agriculture and Life Science, the Virginia Agricultural Council, the Virginia Apple Research Program, the Virginia Agricultural Experiment Station, and Virginia Tech – Department of Horticulture.

Media Contact
Rachel Schutte
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/saj2.20251

Tags: AgricultureEarth ScienceEcology/EnvironmentFertilizers/Pest ManagementFood/Food ScienceGeology/SoilMicrobiologyPlant SciencesPollution/RemediationResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

New Genetic Biomarkers Discovered for Sperm Dysfunction

October 20, 2025

Radiomics and 3D Deep Learning Predict Pancreatic Cancer

October 20, 2025

Acidic Tumors Drive Migratory, Senescent Melanoma Cells

October 20, 2025

Exploring Women’s Heart Health Needs in Georgia

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1266 shares
    Share 506 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    299 shares
    Share 120 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Genetic Biomarkers Discovered for Sperm Dysfunction

Radiomics and 3D Deep Learning Predict Pancreatic Cancer

Acidic Tumors Drive Migratory, Senescent Melanoma Cells

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.