• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Perovskite memory devices with ultra-fast switching speed

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Professor Jang-Sik Lee of Pohang University of Science and Technology (POSTECH) has successfully developed the halide perovskite-based memory with ultra-fast switching speed. The findings from this study were published in Nature Communications on June 10, 2021.

Resistive switching memory is a promising contender for next-generation memory device due to its advantages of simple structure and low power consumption. Various materials have been previously studied for resistive switching memory. Among them, halide perovskites are receiving much attention for use in the memory because of low operation voltage and high on/off ratio. However, halide perovskite-based memory devices have limitations of slow switching speed which hinder their practical application in memory devices.

To this, the researchers at POSTECH (Prof. Jang-Sik Lee, Prof. Donghwa Lee, Youngjun Park, and Seong Hun Kim) have successfully developed ultra-fast switching memory devices using halide perovskites by using a combined method of first-principles calculations and experimental verification. From a total of 696 compounds of halide perovskites candidates, Cs3Sb2I9 with a dimer structure was selected as the best candidate for memory application. To verify the calculation results, memory devices using the dimer-structured Cs3Sb2I9 were fabricated. They were then operated with an ultra-fast switching speed of 20 ns, which was more than 100 times faster than the memory devices that used the layer-structured Cs3Sb2I9. In addition, many of the perovskites contain lead (Pb) in the materials which has been raised as an issue. In this work, however, the use of lead-free perovskite eliminates such environmental problems.

“This study provides an important step toward the development of resistive switching memory that can be operated at an ultra-fast switching speed,” remarked Professor Lee on the significance of the research. He added, “this work offers an opportunity to design new materials for memory devices based on calculations and experimental verification.”

###

Media Contact
Jinyoung Huh
[email protected]

Original Source

https://postech.ac.kr/eng/perovskite-memory-devices-with-ultra-fast-switching-speed/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-23871-w

Tags: Chemistry/Physics/Materials SciencesComputer ScienceMechanical EngineeringNanotechnology/MicromachinesResearch/DevelopmentSoftware EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Birth Equity Through Collaborative Systems Mapping

October 13, 2025
blank

Advancements and Future of OMICS in Plant-Pathogen Research

October 13, 2025

Recovery Rates in Yemeni Children with Severe Malnutrition

October 13, 2025

Stable LiCl Electrolyte with In-Situ Anion Receptor

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Birth Equity Through Collaborative Systems Mapping

Advancements and Future of OMICS in Plant-Pathogen Research

Recovery Rates in Yemeni Children with Severe Malnutrition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.