• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Enantiomorph distribution maps for metals and metallic alloys

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Left- or right-handedness is a symmetry property that many macroscopic objects also exhibit and which is of immense importance, particularly for the bioactivity of organic molecules. Chirality is also relevant for physical or chemical properties such as optical activity or enantioselectivity of crystalline solids or their surfaces. In the case of chiral metallic phases, unconventional superconductivity and unusual magnetic ordered states are linked to the chirality of the underly-ing crystal structure. Despite this connection between chirality and the properties of a material, detection is often difficult because left-handed and righthanded structural variants can cancel each other out or at least weaken chirality effect.

It is not always possible to prepare chiral materials that contain only one of the two structural variants. More often, both structural variants are present in a polycrystalline material. For sys-tematic investigations, it is therefore important to be able to determine the handedness with good spatial resolution.

In the present work, it is show that the EBSD method can be used to determine the distribution of enantiomorphic structural variants not only in polycrystalline materials of multicomponent phases, but also for the chiral elemental structure β-Mn. The difference between multicomponent crystal structures and the elemental structure is therefore of particular importance, since the x-ray diffraction method, which is usually used to determine handedness, does not provide any information of the handedness for a chiral elemental structure such as β-Mn. Since a few years EBSD (Electron Backscatter Diffraction) is an established method to determine the local crystal orientation in a polycrystalline material by means of Kikuchi lines. The EBSD investigation is carried out with a scanning electron microscope. It is therefore a comparatively simple method for determining the local crystallographic properties of a polycrystalline material. The Kikuchi lines are formed by diffraction of the electrons on a strongly tilted, flat surface. However, conventional methods for evaluating the EBSD pattern do not allow any conclusion about the handedness of a phase. Only the consideration of dynamic electron multiple scattering in the simulation calculations yields differences in the Kikuchi lines of the two enantiomorphs. An assign-ment of the handedness is made on base of the better agreement of the experimental EBSD pat-tern with one of the two simulated patterns.

These investigations were carried out on the phases β-Mn and the structurally closely related multicomponent compound Pt2Cu3B. The distribution of enantiomorphs was determined from the EBSD pattern for both phases, while the x-ray diffraction on the Xenon- FIB (Focused ion beam) cut crystals allowed an assignment for the ternary phase only. The EBSD-based determi-nation of the distribution of the enantiomorphs in a polycrystalline material significantly simpli-fies the preparation of materials with defined handedness.

###

Media Contact
Ingrid Rothe
[email protected]

Original Source

https://www.cpfs.mpg.de/3312946/20210531?c=2327

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abg0868

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Antisolvent Polarity Influences Lithium Metal Battery Performance

September 30, 2025
blank

Two-Metal Enzyme Cascade Builds Azetidine Pharmacophore

September 30, 2025

Revolutionizing Sodium-Ion Batteries: Innovative Approach Enhances Hard Carbon Anode Performance

September 30, 2025

Scientists Unveil Mechanism Behind Loop Current Switching in Kagome Metals

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    60 shares
    Share 24 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Parallel Evolution Shapes Virulence in Hospital Klebsiella Outbreak

Tanshinone I Shields Against Osteonecrosis by Activating Nrf2

Exploring Otoliths in Periophthalmodon schlosseri from Vietnam

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.