• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Vitamin D improves gut flora and metabolic syndrome

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It is well known that a diet high in fat can trigger a metabolic syndrome, a group of symptoms that pose as risk factors for diabetes and heart disease. Scientists have now discovered that vitamin D deficiency is necessary for this syndrome to progress in mice, with underlying disturbances in gut bacteria.

If these findings can be validated in humans, sun bathing and vitamin D supplements may be feasible and affordable approaches to improve or even prevent metabolic syndrome.

"Based on this study, we believe that keeping vitamin D levels high, either through sun exposure, diet or supplementation, is beneficial for prevention and treatment of metabolic syndrome," says Professor Stephen Pandol, at Cedars-Sinai Medical Center, USA, who collaborated with Yuan-Ping Han's research group at Sichuan University, China in the study.

Metabolic syndrome affects nearly a quarter of the world's adult population, and it is defined by a group of risk factors that put you on the road to diabetes and heart disease. The characteristic symptoms include obesity around the waistline and at least two of the following: high blood sugar levels, high blood pressure or high cholesterol. Sufferers usually also have excess fat in their liver.

The main cause of metabolic syndrome appears to be a diet high in fat or carbohydrate. However, observational studies have also linked metabolic syndrome to vitamin D deficiency, which affects 30-60% of the world's population.

The research team made important advances in understanding the causative role of vitamin D in this syndrome. "A sufficient dietary vitamin D supplement can partially but significantly antagonize metabolic syndrome caused by high fat diet in mice," says Pandol. "These are amounts equivalent to the dietary recommendations for humans."

More specifically, they have shown that a high fat diet affects the balance between good and bad bacteria in the gut. This induces modest fatty liver and slightly raises blood sugar levels in mice. Remarkably, an insufficient supply of vitamin D aggravates the imbalance in gut flora, contributing to full-scale fatty liver and metabolic syndrome.

Vitamin D deficiency decreases the production of defensins, which are anti-microbial molecules essential to maintain healthy gut flora. As expected, an oral supply of a synthetic defensin recovers gut bacteria balance, decreases blood sugar levels and improves fatty liver.

In summary, a high fat diet alone is not enough to cause metabolic syndrome but it is needed in combination with vitamin D deficiency. Accordingly, vitamin D supplementation improves metabolic syndrome in mice. The next step would be to validate the results in humans.

"Few studies have indicated that vitamin D supplementation may not improve metabolic disorders in humans. However, these studies are largely based on long-term surveys, which may be hampered by poor compliance and insufficient dosage," says Hans.

He remains optimistic that the results of their study can be confirmed in humans. "We are planning a clinical study to confirm the link of vitamin D deficiency with gut bacteria disruption, and its association with metabolic syndrome," says Han.

###

The study was supported by grants from National Natural Science Foundation of China (31571165), and Science and Technology Department of Sichuan Province (2014SZ0194) to YH, NIH R01 AA019954 P01 CA163200 (AL, SP). Department of Veterans Affairs grants: 5IO BX001991-02F (HT), and I01BX001484 (SP).

Read the full article in Frontiers in Physiology: 'Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models'

Media Contact

Monica Favre
[email protected]
0041-215-101-704
@frontiersin

http://www.frontiersin.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

September 2, 2025
Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

September 2, 2025

Evaluating Mindfulness Intervention for Self-Injury Recovery

September 2, 2025

SPS Measures: Challenges and Opportunities in Ag Trade

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

Evaluating Mindfulness Intervention for Self-Injury Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.