• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Huntington’s disease linked to dysfunction of brain structure

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHICAGO — Northwestern Medicine scientists identified a link between Huntington's disease and dysfunction of the subthalamic nucleus, a component of the basal ganglia, a group of brain structures critical for movement and impulse control.

Huntington's disease is characterized by the progressive loss of nerve cells in the brain and affects approximately 1 in 10,000 people. This fatal disorder is caused by a hereditary defect in a single gene.

"Although the genetic basis of the disease is well established, why the mutation leads to the expression of symptoms and loss of brain tissue remains poorly understood," explained senior author Mark Bevan, professor of physiology at Northwestern University Feinberg School of Medicine.

The study was published Dec. 20 in the journal eLife.

The debilitating symptoms of Huntington's disease typically manifest in adulthood and involve loss of motor and cognitive function, depression and personality changes. From the point of onset, symptoms develop and intensify over the following 10 to 25 years until death, typically due to complications associated with the disease.

"While research into Huntington's disease has focused on other parts of the basal ganglia, the subthalamic nucleus has been largely overlooked," said Bevan. "This is surprising because patients with Huntington's disease have fewer nerve cells in the subthalamic nucleus. People who have suffered damage to the subthalamic nucleus exhibit excessive movement and impulsive behavior, similar to patients with Huntington's disease."

Using mice genetically engineered to carry the Huntington's disease gene, scientists discovered the electrical activity of the subthalamic nucleus was lost. Furthermore, impaired subthalamic activity was caused by anomalous receptor signaling, leading to defective energy metabolism and accumulation of damaging oxidants. The authors also found abnormalities in the subthalamic nucleus occur earlier than in other brain regions, and that subthalamic nucleus nerve cells progressively degenerate as the mice age, mirroring the human pathology of Huntington's disease.

"Our findings suggest early problems in the subthalamic nucleus not only contribute to the symptoms of Huntington's disease, but are also likely to impair the processing capacity and health of other brain structures, more traditionally associated with the disease," Bevan said.

Currently, there is no cure for Huntington's disease; treatment can only alleviate some of the symptoms. A better understanding of aberrant brain receptor signaling that leads to nerve cell dysfunction could reveal a target for therapy, according to the authors.

###

Additional Northwestern study authors include: lead author Jeremy Atherton, Eileen McIver; Matthew Mullen; David Wokosin, and D. James Surmeier.

The research was funded by the CHDI Foundation and grants 2R37 NS041280 and 2P50 NS047085 from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.

Media Contact

Marla Paul
[email protected]
@northwesternu

http://www.northwestern.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Understanding Risk Perception and Preparedness in Bucharest Quakes

Understanding Risk Perception and Preparedness in Bucharest Quakes

July 30, 2025
Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

July 30, 2025

Acoustophoretic Seed Separation Revolutionizes Conveyor Sorting

July 30, 2025

Dog Ownership’s ‘Pawsitive’ Impact on Child Neurodevelopment

July 30, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Risk Perception and Preparedness in Bucharest Quakes

Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

Acoustophoretic Seed Separation Revolutionizes Conveyor Sorting

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.