• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Rejuvenating the brain’s disposal system

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Heidelberg, 21 December 2016 – A characteristic feature of Alzheimer's disease is the presence of so called amyloid plaques in the patient's brain – aggregates of misfolded proteins that clump together and damage nerve cells. Although the body has mechanisms to dispose these aggregates, it apparently cannot keep up with the load in the diseased brain. Researchers from the German Center for Neurodegenerative Diseases (DZNE), Munich and the Ludwig Maximilians University (LMU) Munich have now discovered a strategy to help the brain remove amyloid plaques. More precisely: they uncovered a factor that can activate microglial cells to engulf newly forming clumps in the brain. Microglia are the scavenger cells of the brain's immune system that function in keeping the brain tidy and free of any damaging material. The work is published today in The EMBO Journal.

Previous research addressing the function of microglia in Alzheimer's disease was hampered by methodological constraints. Researchers often used microglial cells cultured in a dish, but only microglia from newborn mice survive outside the body. However, young microglia are not ideal to investigate an age-related illness, especially since it was known that microglia change in the course of the disease. All in all, the role of microglia in clearing the brain of amyloid plaques was still under debate.

The research team from Munich, headed by Christian Haass and Sabina Tahirovic, devised a new tissue culture system to address these issues. The scientists took aged brain tissue from mouse model of Alzheimer's disease and co-cultured it with tissue from younger brains. They observed that, within a few days of culturing, amyloid plaques were starting to clear away.

A detailed analysis of this process revealed that microglia from the aging tissue were engulfing the plaques on site, but they received some long-distance assistance from the younger tissue in the dish. In fact, young microglia were secreting factors that helped old microglia rejuvenate, resume cell division and take up their work: clear the brain from plaques. One of the factors that reactivated aged microglia is called "granulocyte-macrophage colony stimulating factor", or GM-CSF for short. The researchers found that GM-CSF alone could do the job.

GM-CSF has previously been reported to reduce plaques and improve cognition in a mouse model of Alzheimer's disease. However, it is not yet known if GM-CSF could potentially work as a new drug for Alzheimer's disease in humans. Caution is advised, because activating microglia may also have its downsides. Microglia secrete small proteins that induce inflammatory reactions and may harm neurons. The new model system of Tahirovic, Haass and their colleagues, however, can be explored further to search for additional factors that enhance the clearance of amyloid plaques.

###

The EMBO Journal (2016) e201694591

Young microglia restore amyloid plaque clearance of aged microglia

Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S

Read the paper: emboj.embopress.org/content/early/2016/12/20/embj.201694591

Media Contact

Dr. Tilmann Kiessling
[email protected]
49-160-901-93839
@EMBOcomm

http://www.embo.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Lactylation Risk Signature Unveiled in Prostate Cancer

August 28, 2025
Comparative Analysis of Cissus Leaf Characteristics

Comparative Analysis of Cissus Leaf Characteristics

August 28, 2025

Surgical Volume and Ovarian Cancer Care Quality Linked

August 28, 2025

Precise Assembly of Nanopore Sequencing in Pathogenic Bacteria

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lactylation Risk Signature Unveiled in Prostate Cancer

Comparative Analysis of Cissus Leaf Characteristics

Surgical Volume and Ovarian Cancer Care Quality Linked

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.