• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New medical image fusion method draws on deep learning to improve patient outcomes

Bioengineer by Bioengineer
May 17, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The authors

Image fusion is a process that can enhance the clinical value of medical images, improving the accuracy of medical diagnoses and the quality of patient care.

Researchers at the College of Data Science Software Engineering at China’s Qingdao University, have developed a new ‘multi-modal’ image fusion method based on supervised deep learning that enhances image clarity, reduces redundant image features and supports batch processing. Their findings have just been published in KeAi’s International Journal of Cognitive Computing in Engineering.

Author Yi Li explains: “Most medical images have unilateral or limited information content; for instance, focus positions vary which can make some objects appear blurred. Having important information scattered across a number of images can hamper a doctor’s judgment. Image fusion is an effective solution – it automatically detects the information contained in those separate images and integrates them to produce one composite image.”

Researchers are increasingly turning to deep learning to improve image fusion. Deep learning, a subset of machine learning, draws on artificial neural networks that are designed to imitate how humans think and learn. That means it is capable of learning from data that is unstructured or unlabelled.

However much of the current research focuses on the application of deep learning in single image fusion processing. Studies that use it for multi-image batch processing are much rarer.

Li explains: “Medical images have specific practical requirements, including information richness and high clarity. During our study, we used successful image fusion results to build an image-training database. We were then able to use that database to fuse medical images in batches.”

Li adds: “Our method also enhances the clarity of MRI, CT and SPECT image fusion, improving the accuracy of medical diagnosis. We have achieved state-of the-art performance in terms of both visual quality and quantitative evaluation metrics. For example, the fused images we produced look more natural, and have sharper edges and higher resolution. In addition, detailed information and features of interest are better preserved.”

###

Contact the paper’s author: Yi Li, [email protected]

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).

Media Contact
Cassie He
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ijcce.2020.12.004

Tags: Algorithms/ModelsCalculations/Problem-SolvingcancerComputer ScienceCritical Care/Emergency MedicineHealth ProfessionalsMathematics/StatisticsMechanical EngineeringMental HealthResearch/Development
Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.