• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Shortcut for dendritic cells

Bioengineer by Bioengineer
May 17, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Source: Arasa et al. Journal of Experimental Medicine 2021, modified

In its response to pathogens and vaccines, our immune system relies on dendritic cells. These white blood cells patrol the body’s tissues, collect components of pathogens and vaccines and transport them via lymphatic vessels to the nearest lymph node. There, they present the collected material to other immune cells in order to trigger an immune response.

How exactly dendritic cells get from the tissue into lymphatic vessels and from there to the lymph node is the focus of research conducted by Cornelia Halin, Professor of Pharmaceutical Immunology at ETH Zurich. For a long time, scientists assumed that dendritic cells choose the path of least resistance and migrate from the tissue into the smallest branches of the lymphatic vessels, the lymphatic capillaries. This is because, unlike other lymphatic vessels, capillaries are surrounded only by a thin, barely closed layer of cells, allowing dendritic cells to slip through the spaces between neighbouring cells relatively easily.

However, this route is slow. While cells in blood vessels and in most other lymphatic vessels are carried along by a flow of fluid, virtually no flow is present in lymphatic capillaries. Consequently, cells in these capillary vessels need to actively move themselves forward, which only happens at an extremely low speed.

Faster despite obstacles

With her team, ETH Professor Halin has now discovered that dendritic cells can take a shortcut. In studies performed on mouse tissues and employing microscopy, the scientists were able to show that dendritic cells can also migrate directly into those lymphatic vessels into which the capillaries merge: the collecting lymphatics. These vessels are surrounded by a well-sealed layer of cells and a thicker membrane of connective tissue. Consequently, migration across these barriers is more difficult for dendritic cells, and entry takes longer than into capillaries. All in all, however, dendritic cells taking this path arrive in the lymph nodes much faster, since immediately after entry they are carried along by the lymph flow present in the collecting vessels and can bypass the slow active migration step in the capillaries.

Thinner barrier in case of inflammation

At present, it is not yet completely understood under which circumstances dendritic cells choose the known path via the capillaries and under which they take the newly discovered shortcut. As ETH Professor Halin and her colleagues have shown, the shortcut becomes available when there is an ongoing inflammatory response in the tissue. Specifically, the researchers were able to show that the connective tissue membrane surrounding the collecting lymphatics becomes degraded during inflammation, making it easier for dendritic cells to penetrate into the collectors.

It thus appears that an inflammatory response is the key factor that allows dendritic cells to take this shortcut and arrive more quickly in the lymph nodes. The scientists will now investigate whether all dendritic cells or only specific subtypes can travel via this route. In particular, they plan to explore the importance of the newly discovered pathway for the activation of the immune system and for installing immune responses. They suspect that the ability to sound the alarm in the lymph node more quickly may provide an advantage in fighting certain infections.

###

Media Contact
Cornelia Halin
[email protected]

Original Source

https://ethz.ch/en/news-and-events/eth-news/news/2021/05/shortcut-for-dendritic-cells.html

Related Journal Article

http://dx.doi.org/10.1084/jem.20201413

Tags: BiochemistryCell BiologyImmunology/Allergies/AsthmaMedicine/HealthMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

August 12, 2025
Common Food Thickeners Once Believed Indigestible Are Actually Broken Down in Our Bodies

Common Food Thickeners Once Believed Indigestible Are Actually Broken Down in Our Bodies

August 12, 2025

How Sputtering Is Accelerating the Adoption of High-Performance ScAlN-Based Transistors

August 12, 2025

Innovative Carbohydrate Synthesis Method Promises Breakthroughs in Biomedical Research

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

BTI, Meiogenix, and FFAR Launch $2 Million Collaborative Project to Advance Tomato Genetics

DFG Funds Enhanced Reliability in Evaluations of Statistical Methods

Kennesaw State Physics Professor Awarded Three-Year Grant to Develop Particle Collider Simulations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.