• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bioengineering approach for functional muscle regeneration

Bioengineer by Bioengineer
May 11, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Combining biochemical and topographical cues improves quality and efficiency of skeletal muscle regeneration

IMAGE

Credit: Sang Jin Lee

WASHINGTON, May 11, 2021 — When trauma, illness, or injury causes significant muscle loss, reconstructive procedures for bioengineering functional skeletal muscles can fall short, resulting in permanent impairments.

Finding a synergy in the importance of biochemical signals and topographical cues, researchers from Wake Forest Institute for Regenerative Medicine, Sungkyunkwan University, and Chonnam National University developed an efficient technique for muscle regeneration and functional restoration in injured rats. They describe results from the technique in the journal Applied Physics Reviews, from AIP Publishing.

The group expanded on a method they previously developed using muscle-specific materials derived from an organism’s tissues (dECM-MA) to construct bioinks, which are materials used for 3D-printing tissue.

They combined dECM-MA from pigs’ skeletal muscles with pol(yvinyl alcohol) (PVA) fibrillation, a technique that provides cues to the molecules in the bioink to guide them to their target tissue and ensure they are properly aligned. By optimizing the PVA to enable stable, viable, well-aligned cell structures, the researchers were able to improve muscle regeneration and function restoration.

“One major benefit over previous approaches is the self-alignment of muscle cells in the 3D structure without any supporting components,” said Sang Jin Lee, one of the authors. “This could allow us to fabricate more clinically relevant bioengineered muscle constructs.”

They tested the technique on rats with injured muscles in their feet. When compared with uninjured rats of the same age and rats with the same injury but no treatment, the rats treated with the muscle regeneration technique showed over 80% muscle function restoration. Moreover, the bioengineered muscles integrated well with the rats’ neural and vascular systems.

These promising results suggest combining dECM-MA with PVA is a clinically feasible method for achieving large-scale tissue regeneration, provided the damage does not extend to nearby cells from which the tissue materials can be derived.

“This advanced bioprinting approach for bioengineering functional skeletal muscle constructs may be an effective therapeutic option for treating extensive muscle defect injuries with accelerated innervation and vascularization,” Lee said.

Since the technique requires cells from the patient, the group anticipates some hurdles in translating the methodology for human subjects, where it will be especially beneficial for systems that require cellular-level alignment, like cardiac and skeletal muscles. In the meantime, they plan to continue preclinical trials on larger, more clinically relevant muscle constructs in larger animals, such as rabbits, dogs, and pigs.

###

The article “Self-aligned myofibers in 3D bioprinted extracellular matrix-based construct accelerate skeletal muscle function restoration” is authored by Hyeongjin Lee, WonJin Kim, JiUn Lee, Kyung Soon Park, James J. Yoo, Anthony Atala, Geun Hyung Kim, and Sang Jin Lee. The article will appear in Applied Physics Reviews on May 11, 2021 (DOI: 10.1063/5.0039639). After that date, it can be accessed at https://aip.scitation.org/doi/full/10.1063/5.0039639.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0039639

Tags: BiologyBiomechanics/BiophysicsCell BiologyChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NIH Grant Supports Innovative Research Targeting the Root Causes of HIV Persistence

Low-Dose Dexamethasone Prevents Paclitaxel Reactions

Unraveling Ion Transport in LISICON Structures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.