• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Male infertility scoring using AI-assisted image classification requiring no programming

Bioengineer by Bioengineer
May 10, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Clinicians at Toho University in Japan developed an AI-based scoring model for testis images to assess patients with severe male infertility. Creation of the image classifier on a cloud-based machine learning framework needed no help from data scientists.

IMAGE

Credit: Hideyuki Kobayashi

Infertility affects females and males equally. In male infertility, azoospermia (a medical condition with no sperm in semen) is a major problem that prevents a couple from having a child. For the treatment of patients with azoospermia, testicular sperm extraction (TESE) is required to obtain mature sperms. When examined, histological specimens are typically given a score, called the Johnsen score, on a scale of 1 to 10, based on the histopathological features of the testis.

“The Johnsen score has been widely used in urology since it was first reported 50 years ago. However, histopathological evaluation of the testis is not an easy task and takes much time due to the complexity of testicular tissue arising from the multiple, highly specialized steps in spermatogenesis. Our goal was to simplify this time consuming step of diagnosis by taking advantage of AI technology. To do this, we chose Google’s automated machine learning (AutoML) Vision, which requires no programming, to create an AI model for individual patient data sets. With AutoML Vision, clinicians with no programming skills can use deep learning in building their own models without help from data scientists,” said Dr. Hideyuki Kobayashi, Associate Professor of Urology department at Toho University School of Medicine (Fig. 1).

“The model we created can classify histological images of the testis without help from pathologists. I hope that our approach will enable clinicians in any field of medicine to build AI-based models which can be used in their daily clinical practice”, he said.

To simplify the use of Johnsen scores in clinical practice, Dr. Kobayashi defined four labels: Johnsen score 1-3, 4-5, 6-7, and 8-10 (Fig. 2). He and his co-researchers obtained a dataset of 7155 images at magnification X400. All images were uploaded to the Google Cloud AutoML Vision platform. For the X400 magnification image dataset, the average precision (positive predictive value) of the algorithm was 82.6%, precision was 80.31%, and recall was 60.96% (Fig. 3).

AI has become popular and is being applied in all fields of medicine. However, the use of AI by clinicians in hospitals is still hampered by the need of help from data scientists in the proper use of AI. “The cloud-based machine learning framework we used is for everyone. It can become such a powerful tool in medicine that, in the near future, doctors in hospitals will be using AI-based medical image classifiers with ease, in the same way they use Microsoft PowerPoint or Excel now”, Dr. Kobayashi said. He added, “The most difficult part was taking images of testis pathology and it was very time consuming. Two colleagues worked very hard to obtain all the images used in the study. I really appreciate their dedicated efforts.”

Dr. Kobayashi’s group has described the development of an AI-based algorithm for evaluating Johnsen scores combining original images (X400), which achieved high accuracy. This is the first report of an algorithm that can be used for predicting Johnsen scores without having to rely on pathologists and data science experts.

###

The study was published in Scientific Reports on 10 May, 2021

Media Contact
Dr. Hideyuki Kobayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-89369-z

Tags: BiologyCell BiologyComputer ScienceDevelopmental/Reproductive BiologyFertilityMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

SGLT2 Inhibitors Reduce Renal Fibrosis in Diabetes

August 31, 2025

Comparative Study of Ustekinumab Biosimilar DMB-3115

August 31, 2025

Enhancing Frozen Shoulder Care: Engaging Stakeholders Effectively

August 31, 2025

Novel BTK Inhibitor Triggers Apoptosis in Tumor Cells

August 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SGLT2 Inhibitors Reduce Renal Fibrosis in Diabetes

Optimizing Hazelnut Shell Gasification with ASPEN Plus

Comparative Study of Ustekinumab Biosimilar DMB-3115

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.