• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Molecular tweezers that attack antibiotic resistant bacteria developed by Ben-Gurion U.

Bioengineer by Bioengineer
May 10, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dani Machlis/BGU

BEER-SHEVA, Israel May 10, 2021 – Researchers from Ben-Gurion University (BGU), together with American and German colleagues, have developed new “molecular tweezers” to combat antibiotic-resistant bacteria. Their recently announced findings were published in Cell Chemical Biology.

For years, medical professionals have struggled with bacterial infections becoming increasingly resistant to antibiotics. These molecular tweezers may be the key to battling one of greatest public health issues of the 21st century.

“Our discovery prevents infection without building up antibiotic resistance, and it might even be preferable to develop treatments based on molecular tweezers rather than antibiotics,” said BGU Department of Chemistry Prof. Raz Jelinek.

The research team, led by Prof. Jelinek and his Ph.D. student Ravit Malishev, tested their molecular tweezers on the Staphylococcus aureus (Staph) bacteria. In the U.S. staph infections have an estimated mortality rate of over 25%, and 40% for drug-resistant strains.

The tweezers target biofilm, a thin layer of fibers that protects the bacteria. By gripping the fibers and destroying the protective layer, the tweezers impair the bacteria without directly attacking it, which prevents resistance from occurring.

Prof. Jelinek, who is also BGUs vice president of Research & Development and a member of the Ilse Katz Institute for Nanoscale Science and Technology explained, “The tweezers are just like your home tweezers but a million times smaller, and instead of plucking hairs they attack fibers of the bacteria’s biofilm.” By doing that they break the biofilm, making it more vulnerable to human immune defenses and external substances that are used against bacteria like antibiotics.”

“The success of the study indicates an innovative direction of antibiotic treatments against pathogenic bacteria. We found that binding the tweezers to the biofilm disrupts its protective capabilities. Consequently, the bacterial pathogens become, less virulent to the human body, and, more vulnerable to elimination by the immune system. This breakthrough may open up new ways to fight antibiotic-resistant bacteria.” Prof. Jelinex hopes that following further testing, a pill containing millions of “swallowable tweezers” could identify biofilms in the body and break them apart.

###

Additional researchers include:

Orit Malka of BGU’s Department of Chemistry; Dr. Sofiya Kolusheva of the BGU Ilse Katz Institute for Nanoscale Science and Technology; Nir Salinas and Prof. Meytal Landau of the Department of Biology, Technion-Israel Institute of Technology. Landau is also a member of the European Molecular Biology Laboratory (EMBL), in Hamburg, Germany. U.S. researchers include James Gibson, Angela Bailey Eden, and Prof. Chunyu Wang of the Center for Biotechnology and Interdisciplinary Studies, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York; Gal Bitan of the David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California, Los Angeles. Partners at the University of Duisburg-Essen in Essen include Ger Joel Mieres-Perez, Yasser B. Ruiz-Blanco, and Prof. Elsa Sanchez-Garcia of the Department of Computational Biochemistry; Prof. Frank-Gerrit Klärner and Prof. Thomas Schrader of the Faculty of Chemistry.

This research was supported by the German Research Foundation, the Boehringer Ingelheim Foundation, and NIH/NIA grants R01AG050721 and RF1AG054000.

About Americans for Ben-Gurion University

Americans for Ben-Gurion University plays a vital role in maintaining David Ben-Gurion’s vision of an “Oxford in the Negev.” By supporting a world-class academic institution that not only nurtures the Negev, but also shares its expertise locally and globally, Americans for Ben-Gurion University engages a community of Americans who are committed to improving the world. The Americans for Ben-Gurion University movement supports a 21st century unifying vision for Israel by rallying around BGU’s remarkable work and role as an apolitical beacon of light in the Negev desert.

For more information visit http://www.americansforbgu.org.

Media Contact
Andrew Lavin
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.chembiol.2021.03.013

Tags: Medicine/HealthMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.