• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Why hotter clocks are more accurate

Bioengineer by Bioengineer
May 7, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lancaster University

A new experiment shows that the more energy consumed by a clock, the more accurate its timekeeping.

Clocks pervade every aspect of life, from the atomic clocks that underlie satellite navigation to the cellular clocks inside our bodies. All of them consume energy and release heat. A kitchen clock, for example, does this by using up its battery. Generally the most accurate clocks require the most energy, which hints at a fundamental connection between energy consumption and accuracy. This is what an international team of scientists from Lancaster, Oxford, and Vienna set out to test.

To do this, they built a particularly simple clock, consisting of a vibrating ultra-thin membrane, tens of nanometers thick and 1.5 millimeters long, incorporated into an electronic circuit. Each oscillation of the membrane generated one electrical tick. The ingenious aspect of this design is that it is powered simply by heating the membrane, while the complete flow of energy through the clock can be measured electrically.

The scientists found that the more heat they supplied, the more accurately the clock ran. In fact, the accuracy was directly proportional to the heat released. To make the clock twice as accurate, they needed to supply twice as much heat.

The experimental team consisted of Dr Edward Laird at Lancaster University, Professor Marcus Huber at Atominstitut, TUWien, Dr Paul Erker and Dr Yelena Guryanova at the Institute for Quantum Optics and Quantum Information (IQOQI), and Dr Natalia Ares, Dr Anna Pearson and Professor Andrew Briggs from Oxford.

Their study, published in Physical Review X, is the first time that a measurement has been made of the entropy – or heat loss – generated by a minimal clock.

Understanding the thermodynamic cost involved in timekeeping is a central step along the way in the development of future technologies, and understanding and testing thermodynamics as systems approach the quantum realm.

It also shows a similarity between the operation of a clock and a steam engine. With a steam engine there is fundamental constraint on how much heat we must supply to do a desired amount of work. This constraint is the famous Second Law of Thermodynamics which is central to modern engineering. What this experiment suggests is that clocks, like engines, are constrained by the Second Law, with their output being accurate ticks instead of mechanical work.

Dr Edward Laird of Lancaster University said: “The subject of thermodynamics, which incorporates the most fundamental principles of nature, tells us that there are two types of machine that we cannot operate without releasing heat. One is the mechanical engine, which releases heat to do work, and the other is the computer memory, which releases heat when it rewrites itself. This experiment – in conjunction with other work – suggests that clocks are also limited by thermodynamics. It also poses an intriguing question: are all possible clocks limited in this way, or is it just a property of the ones we have studied?”

Interestingly, many everyday clocks have an efficiency that is close to what the scientists’ analysis predicts. For example, their formula predicts that a wristwatch whose accuracy per tick is one part in ten million must consume at least a microwatt of power. In fact, a basic wristwatch usually consumes only a few times this amount. The laws of thermodynamics, discovered in the nineteenth century, are still finding new applications today.

###

Media Contact
Gillian Whitworth
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevX.11.021029

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)InternetMaterialsNanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Mental Health Challenges in Methadone Treatment Patients

December 19, 2025
Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

December 19, 2025

Mapping Molecular Differences in Sebaceous Tumors

December 19, 2025

Zinc Oxide-Carbon Nanotube Composites: Photocatalytic Insights

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mental Health Challenges in Methadone Treatment Patients

Sunflower Oil Boosts Immunity in Malnourished Bangladeshi Kids

Mapping Molecular Differences in Sebaceous Tumors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.