• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Having a ball: New English Premier League soccer ball more stable, drags more

Bioengineer by Bioengineer
May 7, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Tsukuba compare a new English Premier League soccer ball with previous versions in wind-tunnel experiments, and find increased drag and stability, which may lead to a better understanding of aerodynamics in sports

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Scientists from the Faculty of Health and Sports Sciences at the University of Tsukuba used aerodynamics experiments to empirically test the flight properties of a new four-panel soccer ball adopted by the English Premier League this year. Based on projectile and wind-tunnel data, they computed the drag and side forces and found that the new ball was marginally more stable than previous versions but may not fly as far. This work may help improve the design of future sports equipment.

Sports players know that millions of dollars in salary and potential endorsement deals can be at stake during each match. Soccer players often complain about the aerodynamic properties of the ball because a random flutter in flight can turn a harmless shot into a goal. Old-school soccer balls have 32 panels, with a mix of hexagons and pentagons. More recently, top soccer leagues have experimented with 6-panel versions with strips similar to a volleyball. For the new season, the English Premier League has introduced the Flight 2020 Soccer Ball by Nike, which is advertised as having molded grooves that provide consistent flight.

Now, researchers at Tsukuba University have tested these claims with wind tunnel experiments. They measured the drag coefficient for the ball, along with two previous models, as a function of the Reynolds number. The Reynolds number, an important parameter in fluid dynamics, controls the transition from smooth to turbulent flow. According to author Professor Takeshi Asai, “at low Reynolds numbers, smooth flow occurs, because viscosity can damp out turbulence. At high Reynolds numbers, chaotic air vortices can lead to unstable and unpredictable flight patterns.”

The team found increased drag at high Reynolds numbers for the new ball. This led to reduced flight range but may have also reduced lateral forces that can destabilize the trajectory. This was especially true in the “asymmetric” orientation of the ball, when one of the grooves was facing forward. “The smaller fluctuations in the side and lift forces of the Flight 2020 indicates that it is less likely to experience irregular changes in trajectory, thereby possibly leading to greater stability during flight,” says Professor Asai.

The team partially attributed this tradeoff in stability at the expense of range to increased surface roughness. This finding may be useful for designing other sports equipment to increase the importance of skill and reduce the impact of luck.

###

The work is published in Scientific Reports as “Aerodynamics of the newly approved football for the English Premier League 2020-21 season” (DOI: 10.1038/s41598-021-89162-y).

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-89162-y

Tags: AcousticsBiomechanics/BiophysicsChemistry/Physics/Materials SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Suicide Prevention: Precision Psychiatry’s Medication Evolution

Unlocking NEC: Epigenetic Biomarkers Predict Outcomes

Psychological Factors Impact Cannabis Users’ Smoking, Drinking

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.