• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tracking down the tiniest of forces: How T cells detect invaders

Bioengineer by Bioengineer
May 5, 2021
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

T cells use their antigen receptors like sticky fingers — a team from TU Wien and MedUni Vienna was able to observe them doing so

IMAGE

Credit: TU Wien / MedUni Wien

T-cells play a central role in our immune system: by means of their so-called T-cell receptors (TCR) they make out dangerous invaders or cancer cells in the body and then trigger an immune reaction. On a molecular level, this recognition process is still not sufficiently understood.

Intriguing observations have now been made by an interdisciplinary Viennese team of immunologists, biochemists and biophysicists. In a joint project funded by the Vienna Science and Technology Fund and the FWF, they investigated which mechanical processes take place when an antigen is recognized: As T cells move their TCRs pull on the antigen with a tiny force – about five pico-newtons (5 x 10-12 or 0.0000000005 newtons). This is not only sufficient to break the bonds between the TCRs and the antigen, it also helps T cells to find out whether they are interacting indeed with the antigen they are looking for. These results have now been published in the scientific journal “Nature Communications“.

Tailor-made for a specific antigen

“Each T cell recognizes one specific antigen particularly well,” explains Johannes Huppa, biochemist and immunology professor at MedUni Vienna.

“To do so, it features around 100,000 TCRs of the same kind on its surface.”

When viruses attack our body, infected cells present various fragments of viral proteins on their surface. T cells examine such cells for the presence of such antigens. “This works according to the lock-and-key principle,” explains Johannes Huppa. “For each antigen, the body must produce T cells with matching TCRs. Put simply, each T-cell recognizes only one specific antigen to then subsequently trigger an immune response.”

That particular antigen, or more precisely, any antigenic protein fragment presented that exactly matches the T cell’s TCR, can form a somewhat stable bond. The question that needs to be answered by the T cell is: how stable is the binding between antigen and receptor?

Like a finger on the sticky surface

“Let’s say we wish to find out whether a surface is sticky – we then test how stable the bond is between the surface and our finger,” says Gerhard Schütz, Professor of Biophysics at TU Wien. “We touch the surface and pull the finger away until it comes off. That’s a good strategy because this pull-away behavior quickly and easily provides us information about the attractive force between the finger and the surface.”

In principle, T-cells do exactly the same. T cells are not static, they deform continuously and their cell membrane is in constant motion. When a TCR binds to an antigen, the cell exerts a steadily increasing pulling force until the binding eventually breaks. This can provide information about whether it is the antigen that the cell is looking for.

A nano-spring for force measurement

“This process can actually be measured, even at the level of individual molecules,” says Dr. Janett Göhring, who was active as coordinator and first author of the study at both MedUni Vienna and TU Vienna. “A special protein was used for this, which behaves almost like a perfect nano-spring, explain the two other first authors Florian Kellner and Dr. Lukas Schrangl from MedUni Vienna and TU Vienna respectively: “The more traction is exerted on the protein, the longer it becomes. With special fluorescent marker molecules, you can measure how much the length of the protein has changed, and that provides information about the forces that occur”. In this way, the group was able to show that T cells typically exert a force of up to 5 pico-newtons – a tiny force that can nevertheless separate the receptor from the antigen. By comparison, one would have to pull on more than 100 million such springs simultaneously to feel stickiness with a finger.

“Understanding the behavior of T cells at the molecular level would be a huge leap forward for medicine. We are still leagues away from that goal,” says Johannes Huppa. “But”, adds Gerhard Schütz, “we were able to show that not only chemical but also mechanical effects play a role. They have to be considered together.”

###

Original publication:

J. Göhring et al., Temporal analysis of T-cell receptor-imposed forces via quantitative single molecule FRET measurements, Nature Communications 12, 2502 (2021)
https://www.nature.com/articles/s41467-021-22775-z

Contact:

Prof. Gerhard Schütz

Institut für Angewandte Physik

Technische Universität Wien

+43 1 58801 13480

[email protected]

Assoz. Prof. Johannes Huppa

Institut für Hygiene und Angewandte Immunologie

Medizinische Universität Wien

+43 1 40160 33004

[email protected]

Media Contact
Florian Aigner
 @tuvienna

0043-158-801-41027

Original Source

https://www.tuwien.at/en/tu-wien/news/news-articles/news/winzigsten-kraeften-auf-der-spur-wie-t-zellen-eindringlinge-erkennen

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22775-z

Tags: Biomechanics/BiophysicsCell BiologyImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025
Sex Differences in Pig Blood Gene Expression

Sex Differences in Pig Blood Gene Expression

October 11, 2025

RLCKs Phosphorylate RopGEFs to Regulate Arabidopsis Growth

October 10, 2025

Discovering New Proteomic Biomarkers for Hypertension

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1207 shares
    Share 482 Tweet 301
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    86 shares
    Share 34 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Framework Uncovers Differential Chromatin Interactions

Radiation-Free Cochlear Implant Positioning in Kids

COVID-19 Pandemic Effects on Childhood Asthma Uncovered

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.