• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cholestenone shows antibiotic properties against H. pylori

Bioengineer by Bioengineer
April 27, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright © 2021, Jun Nakayama, Shinshu University

Helicobacter pylori (H. pylori), a gram-negative pathogen that has infected half of the world’s population is a Group I carcinogen according to the WHO. H. pylori resides in the gastric mucosa causing gastritis, ulcers, gastric cancers and malignant lymphoma of the stomach. It can be eradicated in most infected people using a combination of three drugs; antibiotics clarithromycin, amoxicillin, and gastric acid suppressants. Amoxicillin exerts antibacterial activity by inhibiting the biosynthesis of peptidoglycan present in the cell wall of bacteria, and clarithromycin exerts antibacterial activity by inhibiting protein synthesis.

The current success rate of H. pylori eradication is about 90%. Metronidazole is used instead of clarithromycin for secondary eradication, but the eradication success rate is still 75%, and drug-resistant H. pylori is a growing problem. Therefore, it is expected to develop drugs that exhibit anti-H. pylori activity by a mechanism different from those of these antibiotics.

Cholestenone is a cholesterol analog catabolized by intestinal bacteria. In a study led by Dr. Jun Nakayama of the Department of Molecular Pathology, Shinshu University School of Medicine, cholestenone was found to inhibit biosynthesis of the cell wall of the H. pylori, suppressing its growth. The cell wall of H. pylori contains a molecule called cholesteryl α-D-glucopyranoside (CGL). CGL is important for the survival of H. pylori and is biosynthesized from cholesterol around H. pylori. This study showed that the growth of H. pylori was inhibited and its morphology changed from spiral to spherical after 4 days of incubation in the presence of cholestenone. On the other hand, when H. pylori was cultured for 4 days in the presence of cholesterol, β-sitosterol, and cholestanol as sterols with a hydroxyl group at the 3-position, neither growth inhibition nor abnormal morphology of the bacteria was observed (Fig. 1). In addition, CGL biosynthesis was suppressed in H. pylori cultured in the presence of cholestenone, indicating that cholestenone exhibits antibacterial activity by inhibiting CGL biosynthesis. H. pylori growth suppression by cholestenone was also effective against a clinically isolated clarithromycin-resistant H. pylori strain. Furthermore, mice fed a cholestenone-containing diet showed significant eradication of H. pylori in the gastric mucosa. This suggests that cholestenone could be used as an oral medicine to treat H. pylori patients.

Professor Nakayama’s research group previously showed that α1,4-linked N-acetylglucosamine contained in gastric gland mucus exhibits anti-H. pylori activity by inhibiting the biosynthesis of CGL, essential for its survival. CGL is biosynthesized by the action of CGL synthase (αCgT) present on the cell wall of H. pylori, in which glucose derived from UDP-glucose binds α1,3 to the hydroxyl group at the 3-position of cholesterol. Cholestenone, on the other hand, is a substance very similar to cholesterol, but with a ketone group at its third position. Therefore, cholestenone cannot be a substrate for CGL synthase, and it is hypothesized that H. pylori cannot biosynthesize CGL in the presence of cholestenone.

Cholestenone is a safe molecule and exhibits antibacterial action by a mechanism of action different from that of conventional antibacterial agents, so it is expected to be a new antibacterial drug against H. pylori including clarithromycin-resistant strain.

###

This work was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Sciences, Nos. 16K08708 and 18K08419 (M.K.) and19H03441 (J.N.)

Cholestenone functions as an antibiotic against Helicobacter pylori by inhibiting biosynthesis of the cell wall component CGL

Author / Affiliation: Junichi Kobayashi 1,2, *, Masatomo Kawakubo 1, *, Chifumi Fujii 1,3, Nobuhiko Arisaka 1, Masaki Miyashita 1, Yoshiko Sato 1, Hitomi Komura 1, Hisanori Matoba 1, Jun Nakayama 1 (* Co-first author)

1 Department of Molecular Pathology, Shinshu University School of Medicine

2 Department of Internal Medicine, Shinshu University School of Medicine

3 Shinshu University Advanced Area Fusion Research Group Biomedical Research Institute

Proc Natl Adad Sci USA (Proceedings of the American Academy of Sciences)

DOI: 10.1073 / pnas.2016469118

Point of Contact:

3-1-1 Asahi, Matsumoto City, Nagano Prefecture

Jun Nakayama, Professor, Department of Molecular Pathology, Shinshu University School of Medicine

E-mail: [email protected]

Media Contact
Hitomi Thompson
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.2016469118

Tags: cancerGastroenterologyInternal MedicineMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025
Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.