• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unique method to fabricate freeform structures of thermoplastics in microparticulate gels

Bioengineer by Bioengineer
April 8, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

3D printing of polymer inks in embedding media to fabricate freeform and overhang structures may find applications in rapid prototyping of actuators and antennas

IMAGE

Credit: SUTD

Fabrication of 3D freeform structures of thermoplastics involving overhang (non-anchored) structures is successfully showcased by fused deposition modeling (FDM) and direct ink writing (DIW), yet limited in terms of applicable materials and conditions of printing. 3D printing of freeform structures requires support materials that enable printing of thermoplastics in non-anchored locations.

In order to address the difficulty of freeform fabrication via extrusion-based printing, the use of microparticulate gels as embedding media has been widely explored. Such methods are collectively termed embedded 3D printing (e3DP).

In these demonstrations, the gels behaved as Bingham plastics with a low modulus and low yield stress during the printing of low-viscosity resins. e3DP enabled the freeform fabrication of different materials such as silicones, hydrogels, casting alloys, colloids, and hydrogels containing living cells.

Despite all these successful studies, freeform fabrication of thermoplastics has not been demonstrated with e3DP. This is because the molten thermoplastics and the nozzles are typically greater than 100°C, and they are not compatible with the support media consisting of microparticulate hydrogels.

Researchers from the Singapore University of Technology and Design’s (SUTD) Soft Fluidics Lab developed a simple method to 3D print thermoplastics using embedded media in freeform manners, termed freeform polymer precipitation (FPP).

In FPP, microparticulate gels as surrounding media simultaneously offered two essential functions. The microparticulate gels provided structural support to the printed ink and induced the phase change of the printed ink via immersion precipitation. 3D printing based on immersion precipitation with surrounding microparticulate has unlocked the capability of freeform fabrication of thermoplastics.

The study demonstrated the use of both water-based and ethanol-based microparticulate gels as surrounding gels that allowed the increased numbers of solvents and polymers to be used in FPP. Polymer inks with low polymer concentrations (with low viscosity) and inks with pore-inducing agents conferred internal porosity to the printed structures.

“Our approach has overcome the limitation of use of microparticulate media for the fabrication of freeform structures of thermoplastics, for the first time, using the immersion precipitation of polymer inks in microparticulate gels,” said the lead author of the paper Dr Rahul Karyappa from SUTD.

“FPP offers a unique way to fabricate mechanically strong components consisting of thermoplastics in various 3D shapes without support materials. This expands the available technologies of additive manufacturing,” added principal investigator, Associate Professor Michinao Hashimoto from SUTD.

###

This paper titled ‘Freeform Polymer Precipitation in Microparticulate Gels’ has been published in ACS Applied Polymer Materials, a leading journal that encourages original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.

Media Contact
Jessica Sasayiah
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsapm.0c01208

Tags: Chemistry/Physics/Materials SciencesMaterialsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

August 19, 2025
Serve with a Spectacular Swerve: The Science Behind Spin and Precision

Serve with a Spectacular Swerve: The Science Behind Spin and Precision

August 19, 2025

Enhanced Trap Visualization: Full-Dimensional Imaging Advances Solar Cell Efficiency

August 19, 2025

Chefs and Scientists Collaborate to Explore Microbiology Through Kombucha and Kimchi

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Creating ZnCr2S4 and ZnCr2S4/rGO for Energy Storage

New Study Reveals Early Heart Dysfunction in Young Adults with Bipolar Disorder

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.