• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

U of A team identifies protein that blocks body’s ability to clear bad cholesterol

Bioengineer by Bioengineer
April 1, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers are now looking to develop a drug that will boost existing statin drugs to prevent heart disease

IMAGE

Credit: University of Alberta

A team of researchers at the University of Alberta has uncovered a long-sought link in the battle to control cholesterol and heart disease.

The protein that interferes with low-density lipoprotein (LDL) receptors that clear “bad” cholesterol from the blood was identified in findings recently published in Nature Communications by Dawei Zhang, associate professor of pediatrics in the Faculty of Medicine & Dentistry. Excess LDL cholesterol can lead to atherosclerosis–a narrowing and hardening of arteries–and ultimately, heart attack.

“We have known for many years that these receptors could be cleaved, but nobody knew which protein was responsible,” said Zhang. “There had been several attempts around the world but nobody else was successful.”

Now that the culprit has been identified, Zhang’s lab is already at work to find a drug to target the protein, allowing the receptors to clear more LDL.

A cholesterol-reducing class of drugs called statins–Lipitor and Crestor are two well-known brand names–has been shown to reduce cardiac events by 20 to 40 per cent, but they have side-effects that mean they can’t be given in high enough doses to work for everyone. The new drug would be used in combination with statins to boost their effect, Zhang said.

Zhang’s team stumbled upon the role of the protein–membrane type 1 matrix metalloproteinase–by accident while studying another protein involved in heart function. They then set out to repeat and confirm their findings in mouse, rat and human cells, working in collaboration with researchers in China and other faculty members at the U of A. Their study was funded by the Heart and Stroke Foundation of Canada and the Canadian Institutes of Health Research. Zhang is also a member of the Women and Children’s Health Research Institute.

The protein has other critical physiological functions, Zhang explained, so his lab will work to identify and focus on the specific region within the protein that acts on the LDL receptor. They are also working with a new technique to further target their potential drug so it will work only within the liver, further reducing the likelihood of unwanted side-effects. Their early results are encouraging, Zhang said.

Zhang noted the protein is also critical for cancer tumour invasion, so the team will collaborate with U of A oncology experts to learn more.

“The one protein is a shared risk factor for the two most common diseases in humans–cancer and cardiovascular disease,” he said. “We will explore whether we can target one protein to reduce the incidence of the two most common human diseases.”

###

Media Contact
Ross Neitz
[email protected]

Original Source

https://www.ualberta.ca/folio/2021/03/u-of-a-team-identifies-protein-that-blocks-bodys-ability-to-clear-bad-cholesterol.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-22167-3

Tags: CardiologyCholesterolMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.