• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Away with the bad cliché: Bacterial complexity is often underestimated

Bioengineer by Bioengineer
April 1, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nina Lautenschlaeger

The project is one of thirteen priority programs approved by the Senate of the German Research Foundation (DFG) this week. The funding amounts to about six million euros for the first three years with a total duration of six years (2022-2028).

Since the founding of classical bacteriology in the mid-19th century by Robert Koch and Louis Pasteur, little has changed in the perception of microbes, the so-called prokaryotes, which lack a cell nucleus: Bacteria are still considered to be tiny, single-celled, and simple organisms. They are thus opposed to the “higher” organisms, the so-called eukaryotes, which are equipped with a nucleus. Eukaryotes are characterized by a high degree of differentiation of their complex and multicellular species, first and foremost, of course, the animals and plants. Despite this perception, during the development of life on earth, multicellularity is of bacterial origin. So far, however, their investigation has failed due to the technological limitations, since bacterial cells are much smaller than the cells of higher organisms. This is where SPP2389 comes in: The biophysical properties, physiological functions, as well as the evolutionary origin of multicellularity in microorganisms will be studied in detail using state-of-the-art, high-resolution optical and chemical analytical methods and highly interdisciplinary approaches. In addition to a fundamental understanding of the biological principles and molecular mechanisms governing self-organization and interaction in microbial tissues, the expected gain in knowledge also holds application potential: for example, for combating antibiotic resistance in bacterial communities or for developing “productive biofilms” for technical biocatalysis.

“We want to free the microbes we appreciate so much from the bad cliché of being boring, tiny and inconspicuous unicellular organisms, which at most attract attention as germs of diseases. This SPP is about nothing less than initiating a paradigm shift in the perception of microorganisms, which will hopefully also be reflected in future textbooks: Bacterial life is preferentially multicellular and complexly differentiated,” is how microbiologist and SPP spokesperson Prof. Thorsten Mascher explains the project.

###

Media Contact
Prof. Thorsten Mascher
[email protected]

Tags: BacteriologyBiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.