• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The world’s longest bottlebrush polymer ever synthesized

Bioengineer by Bioengineer
March 25, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Potential utility for the development of flexible, low-friction polymeric materials

IMAGE

Credit: NIMS

NIMS and RIKEN have succeeded in synthesizing the longest ever bottlebrush polymer. This polymer–resembling a green foxtail–is composed of a main chain and numerous side chains grafting from it. The team also succeeded in giving various chemical properties to the ultralong bottlebrush polymer. These achievements are expected to substantially advance the current synthetic methods of bottlebrush polymers. This technique may be applicable to the development of flexible and low-friction polymeric materials.

In the development of polymeric materials, it is necessary to link molecular units with desired chemical properties, called monomers, to the desired length. In this context, bottlebrush polymers are attracting attention as a new type of polymer material, consisting of a single main chain and numerous side chains, and it is possible to design polymers with various chemical compositions by selecting the side chains. On the other hand, conventional synthetic methods are limited to lengths on the order of several hundred nanometers, or at most about 1 μm, due to issues such as monomer reactivity and the presence of trace impurities, and there is no precedent for the synthesis of bottlebrush polymers longer than 2 μm.

This research team recently succeeded in synthesizing the longest bottlebrush polymer ever by devising the molecular design of the monomer as starting material and using a single crystal of the monomer to set up a polymerization environment with very few impurities. The length reached 7 μm, which is about 3.8 times longer than the longest value so far. Furthermore, by combining two types of polymerization methods, the research team succeeded in synthesizing bottlebrush polymers with four types of side chains while maintaining the length of the main chain.

Use of the monomers developed in this research enables the synthesis of a variety of bottlebrush polymers with controlled length, diameter and chemical properties. Bottlebrush polymers may be used as a low-friction surface coating. Applying this polymer to the surfaces of moving machinery parts, for example, may reduce energy loss caused by friction. In future studies, we plan to develop flexible and low-friction materials taking advantage of the ultralong bottlebrush polymer.

###

This project was carried out by a research team led by Yoshihiro Yamauchi (Independent Scientist, Research Center for Functional Materials, NIMS) and Yasuhiro Ishida (Team Leader, Center for Emergent Matter Science, RIKEN). This work was mainly supported by the JSPS Grant-in-Aid for Scientific Research (B) (project numbers: 20H02454, 20H02791), the JST Strategic Basic Research Program CREST (project number: JPMJCR17N1), the Izumi Science and Technology Foundation (2018-J-115), the Iketani Science and Technology Foundation (0321143-A) and the Shorai Foundation for Science and Technology.

6. This research was published in the online version of Angewandte Chemie International Edition as a “Hot Paper” on November 30, 2020.

Contacts

(Regarding this research)

Yoshihiro Yamauchi

Independent Scientist

Molecular Mechatronics Group

Polymers and Biomaterials Field

Research Center for Functional Materials

National Institute for Materials Science

Tel: +81-29-859-2196

Email: YAMAUCHI.Yoshihiro=nims.go.jp

(Please change “=” to “@”)

Yasuhiro Ishida

Team Leader, Center for Emergent Matter Science

RIKEN

Tel: +81-48-462-1111 (6351)

Email: y-ishida=riken.jp

(Please change “=” to “@”)

URL: https://cems.riken.jp/jp/laboratory/ebsmrt

(General information)

Public Relations Office

National Institute for Materials Science

Tel: +81-29-859-2026

Fax: +81-29-859-2017

Email: pressrelease=ml.nims.go.jp

(Please change “=” to “@”)

Public Relations Office

RIKEN

Email: ex-press=riken.jp

(Please change “=” to “@”)

Media Contact
Yasufumi Nakamichi
[email protected]

Original Source

https://www.nims.go.jp/eng/news/press/2020/12/202012090.html

Related Journal Article

http://dx.doi.org/10.1002/anie.202009759

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers Faced by Community Midwives in Rural Pakistan

Perioperative Tumor Cell Changes Impact Colorectal Surgery

AI Advances Male Pattern Hair Loss Stratification

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.