• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

World’s most sensitive radio telescope concludes 15-month listening session, accepting international proposals

Bioengineer by Bioengineer
March 24, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by NAO

Nestled in the mountainous landscape of Guizhou in southwest China, the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a single-dish radio telescope the size of 30 soccer fields. It has recently finished 15 months of listening to the sounds of the Universe. Data collected during this inaugural listening session and the pre-launch testing period has already resulted in more than 60 peer-reviewed publications.

The National Astronomical Observatories of Chinese Academy of Science (NAOC) launched the US$171-million (RMB1.2-billion) facility in January of 2020, after nine years of construction, technological outfitting and testing.

As the most sensitive radio telescope in the world, FAST is tasked with a multitude of endeavors. From investigating the molecular nature of hydrogen galactic clouds, to exploring the origin and evolution of the Universe, and everything in between, FAST had a full docket for its first scientific observing period.

However, the observing period was not the first time FAST listened to the sky – it was scientifically operational for more than one year for testing and reviewing. On August 29, 2019, it became the first telescope to catch an extremely active episode of Fast Radio Burst (FRB) 121102, the first repeating FRB source ever discovered. The subsequent FAST observing campaign accumulated more than 1000 burst detections, more than those from all other telescopes combined in the past seven years. By February of 2021, four new FRB discoveries have been published based on FAST data. Dedicated FAST observations of known FRB sources have resulted in two publications on Nature, one reveals new magnetic behaviors and one constraints the radio flux of the first Galactic FRB. The latter of which was selected, by both Nature and Science magazines, as part of the top scientific achievements of 2020 world-wide.

FAST has discovered more than 200 pulsars, the first 11 of which have been published with coherent timing solution. These dense, rotating neutron stars were once giant stars that collapsed in on themselves. They occasionally pulse an intense radiation beam that can be heard as a radio signal by FAST. FAST has revealed previously unseen complex emission patterns, challenging “the classic carousel-type models”. The science team has also discovered millisecond pulsar binaries in clusters of stars. These millisecond pulsar binaries are thought to be old, paired pulsars that rotate on the scale of millisecond. Among the discoveries is a “black widow spider”, which is consuming its partner star.

FAST has also been observing hydrogen gas both in the Milky Way and beyond. Detection of atomic hydrogen in four galaxies allow for a better determination of their baryonic content. By measuring the depth of absorption against the so-called background quasars, which are bright distant stellar like sources driven by central supermassive black holes, scientists have also placed the stringiest limit so far on the molecular content in distant galaxies, using FAST.

FAST’s next observing epoch will begin this August and run through the July of 2022. Users of any nationality or affiliation are invited to submit regular science proposals of less than 100 observing hours for the upcoming observing period. Proposals are accepted between March 31 to May 15, 2021. Please contact: [email protected] with any questions.

The FAST Call for Proposal is available at http://fast.bao.ac.cn/proposal_submit.

###

Media Contact
XU Ang
[email protected]

Original Source

https://english.cas.cn/head/202103/t20210324_266509.shtml

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MINFLUX Reveals Cardiac Ryanodine Receptor Structure in 3D

Antisense Therapy Reverses Developmental Defects in SMA Organoids

Black Soldier Fly Larvae Boost African Catfish Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.