• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Phytol may be promising for eco-friendly agrochemicals to control root-knot nematodes

Bioengineer by Bioengineer
March 22, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Taketo Fujimoto, Hiroshi Abe, Takayuki Mizukubo, and Shigemi Seo

Root-knot nematodes (RKNs, Meloidogyne spp.) infect a broad range of plants, including several agriculturally important species such as cotton, soybean and corn, as well as various vegetables and ornamentals. These parasites cause roots to develop galls that result in severe plant damage and, ultimately, important crop losses. Growers currently use synthetic nematicides to manage RKNs; however, these compounds are detrimental to the microbial diversity of soil and harmful for the environment. Thus, it is necessary to develop alternative sustainable control methods.

“We have been seeking natural compounds that activate plant defense systems and do not have direct nematicidal activity using the combination of RKNs and their host plants,” explained Shigemi Seo, researcher at the National Institute of Agrobiological Sciences of Japan. “We were most excited to discover that phytol, a chlorophyll constituent, has an inhibitory effect on the root invasion by a certain harmful plant nematode without killing it. We did not expect this molecule to be involved in RKN resistance.”

“We noticed that plant leaves discolored yellow or pale green when their roots were parasitized by RKNs and confirmed a decrease in chlorophyll content in such leaves. We hypothesized that chloroplast-related compounds would accumulate in RKN-parasitized roots and induce the host defense against RKNs. We analyzed root metabolites and found accumulation of phytol, a constituent of chlorophyll. When phytol was applied to plant roots, RKN invasion of the roots was inhibited. This inhibition was not due to the direct nematicidal activity of phytol, since this compound did not kill RKNs,” added Seo.

Even though phytol has been known for several years as a constituent of chlorophyll and is a ubiquitous compound present in almost all photosynthetic organisms, its role as a plant defense-signaling molecule remained unexplored. “Phytol may be a promising material for eco-friendly agrochemicals for the control of RKNs. We are currently investigating its effects on not only other plant parasitic nematodes but also other pathogenic microorganisms.”
For more information about this study, read “Phytol, a Constituent of Chlorophyll, Induces Root-Knot Nematode Resistance in Arabidopsis via the Ethylene Signaling Pathway” in the MPMI journal.

###

Media Contact
Juan S. Ramirez-Prado
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/MPMI-07-20-0186-R

Tags: Agricultural Production/EconomicsAgricultureBiologyBiotechnologyFertilizers/Pest ManagementFood/Food ScienceMicrobiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.