• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Engineers combine AI and wearable cameras in self-walking robotic legs

Bioengineer by Bioengineer
March 15, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Waterloo

Robotics researchers are developing exoskeletons and prosthetic legs capable of thinking and moving on their own using sophisticated artificial intelligence (AI) technology.

The system combines computer vision and deep-learning AI to mimic how able-bodied people walk by seeing their surroundings and adjusting their movements.

“We’re giving robotic legs vision so they can control themselves,” said Brokoslaw Laschowski, a PhD candidate in systems design engineering who leads a University of Waterloo research project called ExoNet.

Exoskeletons and prosthetic devices operated by motors already exist, but users must manually control them via smartphone applications.

“That can be inconvenient and cognitively demanding,” said Laschowski, a student member of the Waterloo Artificial Intelligence Institute (Waterloo.ai). “Every time you want to perform a new locomotor activity, you have to stop, take out your smartphone and select the desired mode.”

To address that limitation, the researchers fitted exoskeleton users with wearable cameras and are now optimizing computer software to process the video feed to accurately recognize stairs, doors and other features of the surrounding environment.

The next phase of the ExoNet project will involve sending instructions to motors so that robotic legs can climb stairs, avoid obstacles or take other appropriate actions based on analysis of the user’s current movement and the upcoming terrain.

“Our control approach wouldn’t necessarily require human thought,” said Laschowski, who is supervised by engineering professor John McPhee, the Canada Research Chair in Biomechatronic System Dynamics. “Similar to autonomous cars that drive themselves, we’re designing autonomous exoskeletons and prosthetic legs that walk for themselves.”

The researchers are also working to improve the energy efficiency of motors for robotic exoskeletons and prostheses by using human motion to self-charge batteries.

###

The latest in a series of papers on the related projects, Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses with Energy Regeneration, appears in the journal IEEE Transactions on Medical Robotics and Bionics.

The research team also includes engineering professor Alexander Wong, the Canada Research Chair in Artificial Intelligence and Medical Imaging, and William McNally, also a PhD candidate in systems design engineering and a student member of Waterloo.ai.

Media Contact
Ryon Jones
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringDisabled PersonsPainPhysiologyRehabilitation/Prosthetics/Plastic SurgeryResearch/DevelopmentRobotry/Artificial IntelligenceSurgeryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

New Risk Score Predicts Gastric Cancer

November 22, 2025
Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

November 22, 2025

Microbial Copper Extraction from Waste Resins and Slags

November 22, 2025

Smart Transfer Learning for Battery Charge Estimation

November 22, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Risk Score Predicts Gastric Cancer

Eco-Friendly ZnO Nanoparticles: Synthesis, Properties, and Applications

Microbial Copper Extraction from Waste Resins and Slags

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.