• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors

Bioengineer by Bioengineer
March 11, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Yuhan Wang, Zhonghui Nie, Fengqiu Wang

Two-dimensional (2D) semiconductors can host a rich set of excitonic species because of the greatly enhanced Coulomb interactions. The excitonic states can exhibit large oscillator strengths and strong light-matter interactions, and dominate the optical properties of 2D semiconductors. In addition, because of the low dimensionality, excitonic dynamics of 2D semiconductors can be more susceptible to various external stimuli, enriching the possible tailoring methods that can be exploited. Understanding the factors that can influence the dynamics of the optically-generated excited states represents an important aspect of excitonic physics in 2D semiconductors, and is also crucial for practical application as excited state lifetimes are linked to the key figures of merit of multiple optoelectronic and photonic devices. While certain experiences have been accumulated for bulk semiconductors, the atomic nature of 2D semiconductors might makes these approaches less effective or difficult to be adapted. One the other hand, the unique properties of 2D semiconductors, such as the robust excitonic states, the sensitivity to external environmental factors and flexibility in constructing vdW heterostructures, promise modulation strategies different from conventional materials.

In a new review article published in Light: Science & Application, a team of researchers, led by Professor Fengqiu Wang from Nanjing University, China summarize the so far obtained knowledge and progresses on the modulation of photocarrier relaxation dynamics in 2D semiconductors. After a brief summary on the photocarrier relaxation dynamics in 2D semiconductors, the authors first discuss the modulation of Coulomb interactions and the resulting effects on the transient properties. The Coulomb interactions in 2D semiconductors can be modulated by introducing additional screening from the external dielectric environment or injected charge carriers, leading to the modification of quasi-particle bandgaps and the exciton binding energy. Then the influencing factors on photocarrier dynamics and the manipulating methods are discussed according to the relaxation pathways or mechanisms they are associated with. The first discussed factor is the initial distribution of photocarriers in electronic band structures, which can affect their decay processes by enabling different available relaxation pathways in the energy and momentum space. After that the defect-assisted and phonon-assisted relaxation are discussed. While the approaches utilizing defect-assisted relaxation such as ion bombardment and encapsulation are similar to those for bulk semiconductors, the modulation on phonon-assisted relaxation for 2D semiconductors can be different. “On one hand, the coupling between charge carriers and phonons can be enhanced due to the suppressed dielectric screening; on the other hand, the high surface-to-volume ratio make 2D materials more susceptible to the external phononic environment.” Moreover, the flexibility in constructing vdW heterostructures and the ultrafast charge transfer across the interfaces enables tailoring the photocarrier dynamics though band alignment engineering. The transition between different particle species also offers the opportunity to modulate through changing the ratios between different quasiparticles, which can modify the relative portion of different relaxation pathways, and thus the transient optical responses of the whole sample. At last, the modulation of the dynamics of spin/valley polarization in 2D TMDs is discussed, and the discussion is mainly focusing on the methods to increase the lifetime of the spin/valley polarization.

Through this review, the authors aim to provide guidance for developing robust methods tuning the photocarrier relaxation behaviors and strength the physical understanding on this fundamental process in 2D semiconductors. As is commented by the authors at the end “Tremendous research efforts are still needed in both fundamental understanding and practical modulation of the photocarrier relaxation in 2D semiconductors.”

###

Media Contact
Fengqiu Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00430-4

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Exercise Prehabilitation for Blood Cancer

Combining 3 Biomarker Tests Could Enable Earlier Detection of High Heart Disease Risk

Maintaining Optimal Cardiovascular Health in Type 2 Diabetes Could Reduce Dementia Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.