• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Collagen plays protective role during pancreatic cancer development

Bioengineer by Bioengineer
March 4, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings suggest the protein helps slow tumor progression, pointing to new cancer therapeutic strategies

IMAGE

Credit: MD Anderson Cancer Center

HOUSTON — Contrary to long-held beliefs, Type I collagen produced by cancer-associated fibroblasts may not promote cancer development but instead plays a protective role in controlling pancreatic cancer progression, reports a new study from researchers at The University of Texas MD Anderson Cancer Center. This new understanding supports novel therapeutic approaches that bolster collagen rather than suppress it.

The study finds that collagen works in the tumor microenvironment to stop the production of immune signals, called chemokines, that lead to suppression of the anti-tumor immune response. When collagen is lost, chemokine levels increase, and the cancer is allowed to grow more rapidly. The research was published today in Cancer Cell.

“Collagen has been the most highly studied component of the tumor microenvironment for decades, but its precise role has remained unclear,” said senior author Raghu Kalluri, M.D., Ph.D., chair of Cancer Biology. “Now, we understand that it is part of a cancer defensive strategy of the body. If we can better understand that strategy, even if it may be suboptimal, we can work to shore up our body’s natural defenses to have therapeutic impact.”

Collagen, the most abundant protein in the human body, is produced by a class of cells called fibroblasts and is found mostly in bones, tendons and skin. The protein also tends to accumulate in and around tumors during cancer development and growth, leading researchers to hypothesize that it helps promote tumor growth, metastasis or drug resistance, Kalluri explained.

To investigate these possibilities and clarify the role of collagen, the research team created a mouse model in which collagen is not produced by cancer-associated fibroblasts during pancreatic cancer development. After genetically deleting collagen from these cells, called myofibroblasts, more than 50% of the total collagen was absent in the tumor microenvironment.

With collagen reduced, pancreatic cancer growth accelerated, and the overall survival of the mice significantly decreased, suggesting that collagen plays an important role in blocking cancer progression.

The researchers looked further to understand how collagen was impacting tumor development. In tumors with reduced collagen, the cancer cells produced higher levels of chemokines known to attract myeloid-derived suppressor cells (MDSCs), a type of immune cell that dampens anti-tumor immune response.

Indeed, the researchers found that collagen-deficient tumors had more MDSCs present and fewer immune cells, such as T cells and B cells, that could mount an effective anti-tumor response. Interestingly, blocking chemokine signaling activity with targeted therapies reversed the immune profile in these tumors and slowed tumor progression, bringing it back to a level similar to that of controls.

“This was somewhat surprising because we think of pancreatic cancer as a cancer with poor immune surveillance – with an immunosuppressive tumor microenvironment,” Kalluri said. “However, this study shows that the immune system actually is controlling pancreatic tumor growth to some extent, and we see an even more detrimental immune suppressive tumor microenvironment when collagen is lost.”

Noting that pancreatic cancer is one of the most aggressive tumor types with poor outcomes overall, Kalluri acknowledged that collagen by itself may not be a particularly effective defense mechanism, but it shows that our bodies are doing what they can to control cancer development.

He likens the body’s response to a car with faulty brakes. The car cannot stop as efficiently as it might with good brakes, but it is better than a car with no brakes at all.

The challenge now, Kalluri explained, is to identify a therapeutic strategy to fix those brakes, by increasing collagen levels or boosting collagen’s downstream effects to further strengthen the anti-tumor response. Exploring these strategies will be the focus of future work by Kalluri’s team.

###

This research was supported by the Cancer Prevention & Research Institute of Texas (RP150231) and the National Cancer Institute (PO1CA95616). Collaborating authors on the MD Anderson study include: Yang Chen, Ph.D., Jiha Kim, Ph.D., Sujuan Yang, Hikaru Sugimoto, M.D., Ph.D., and Valerie S. LeBleu, Ph.D., all of Cancer Biology; Huamin Wang, M.D., Ph.D., of Translational Molecular Pathology; and Chang-Jiun Wu, Ph.D., of Genomic Medicine. The authors declare no conflicts of interest.

Media Contact
Clayton Boldt, Ph.D.
[email protected]

Tags: cancerCell BiologyMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

November 6, 2025

Concussions Associated with Higher Risk of Severe Traffic Accidents

November 6, 2025

Inflation Test Reveals Central Cornea’s Biomechanical Properties

November 6, 2025

Scientists Collaborate to Define Deportations as a National Public Health Emergency

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

Assessing Droughts in Ethiopia’s Abaya Chamo Basin

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.