• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Best case’ goals for climate warming which could still result in massive wildfire risk

Bioengineer by Bioengineer
March 3, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A seemingly small difference in global warming levels could greatly impact wildfires worldwide, researchers have found

IMAGE

Credit: Pexels

Under the 2015 Paris Agreement, the United Nations Framework Convention on Climate Change agreed to pursue efforts to limit the temperature increase to 2.0°C and, ideally, to 1.5°C, over preindustrial levels. However, even before that treaty was signed, scientists had already warned that those “best case” targets were unlikely to be achievable. Consequently, many fire weather studies are built with models that simulate much higher levels of climate warming.

Recently, researchers from South Korea, Japan, and the United States have found that by projecting the fire weather conditions under two mildly varying warming levels — one in which the global climate warms by 1.5°C and the other by 2°C — even just a half-degree of warming could significantly increase the likelihood and significance of wildfires!

“When it comes to the conditions that make wildfires more likely, a little bit of warming goes a long way,” explained lead author Rackhun Son, Ph.D. candidate at Gwangju Institute of Science and Technology (GIST), Korea, “but, of course, this is troubling, because it is quite unlikely that we will only be experiencing a little bit of warming.”

“Although it is reasonable to look at fire weather under more extreme circumstances, there is little sense in making goals without a good understanding of what might happen if you were to reach those goals,” said co-author Seung-Hee Kim of Chapman University, “so, we asked ‘what would happen if we did reach these goals? Would the fire weather conditions not become as severe?'”

That answer is complex, but this study’s key finding is that just a half a degree of additional warming would likely create a notably greater danger of fire on the most widely inhabited continents, with dangers particularly concentrated in the Amazon rainforest and African savanna, and around the Mediterranean. “We also provided evidence that places like Australia and Indonesia are likely to reach peak levels of fire susceptibility even before we reach that lower threshold,” said co-author Simon Wang of Utah State University.

The study does provide a silver lining of hope to this cloud of danger. Commenting on the implications of their findings, Dr. Wang comments, “If we were somehow able to suppress this extra half a degree of warming, we could reduce climate-driven extreme fire activities in many places, potentially saving many lives and billions of dollars.”

###

Their research has been published in the journal Environmental Research Letters.

Reference

Title of original paper: Changes in fire weather climatology under 1.5°C and 2.0°C warming

Journal: Environmental Research Letters

DOI: 10.1088/1748-9326/abe675

About Gwangju Institute of Science and Technology (GIST)

Website: http://www.gist.ac.kr/

About the author

Jinho Yoon is Associate Professor of Earth Sciences and Environmental Engineering at GIST. His group focuses on understanding and predicting weather-climate extremes under climate change. Prof. Yoon’s group is also analyzing aerosol-cloud-precipitation interactions to understand the distribution and characteristics of clouds. Before coming to GIST, he was a scientist (level 3) at Pacific Northwest National Laboratory. In 2004, Prof. Yoon received a PhD in Atmospheric Sciences from Iowa State University.

Media Contact
Nayeong Lee
[email protected]

Related Journal Article

http://dx.doi.org/10.1088/1748-9326/abe675

Tags: Atmospheric ChemistryAtmospheric ScienceBiologyClimate ChangeClimate SciencePollution/RemediationTemperature-Dependent PhenomenaWeather/Storms
Share12Tweet8Share2ShareShareShare2

Related Posts

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025
3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

The Fascinating Origins of Our Numerals

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neural Circuitry Driving Autonomic Dysreflexia Unveiled

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.