• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Fat cells may influence how the body reacts to heart failure, study shows

Bioengineer by Bioengineer
February 23, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Promising results in mice open door to new areas of research in treating patients with heart failure.

IMAGE

Credit: University of Alberta

University of Alberta researchers have found that limiting the amount of fat the body releases into the bloodstream from fat cells during heart failure could help improve outcomes for patients.

In a recent study published in the American Journal of Physiology, Jason Dyck, professor of pediatrics in the Faculty of Medicine & Dentistry and director of the U of A’s Cardiovascular Research Centre, found that mice with heart failure that were treated with a drug blocking the release of fat into the bloodstream from fat cells saw less inflammation in the heart and throughout the body, and had better outcomes than a control group.

“Many people believe that, by definition, heart failure is only a condition of the heart. But it’s much broader and multiple organs are affected by it,” said Dyck, who holds the Canada Research Chair in Molecular Medicine and is a member of the Alberta Diabetes Institute and the Women and Children’s Health Research Institute. “What we’ve shown in mice is that if you can target fat cells with a drug and limit their ability to release stored fat during heart failure, you can protect the heart and improve cardiac function.

“I think it really opens the door for other avenues of investigation and therapies for treating heart failure,” Dyck noted.

During times of stress, such as heart failure, the body releases stress hormones, such as epinephrine and norepinephrine, to help the heart compensate. But because the heart can’t function any better–and is in fact damaged further by being forced to pump faster–the body releases more stress hormones and the process cascades, with heart function continuing to decline. This is why a common treatment for heart failure is beta-blocker drugs, which are designed to block the effects of stress hormones on the heart.

The release of stress hormones also triggers the release of fat from its storage deposits in fat cells into the bloodstream to provide extra energy to the body, a process called lipolysis. Dyck’s team found that during heart failure, the fat cells in mice were also becoming inflamed throughout the body, mobilizing and releasing fat faster than normal and causing inflammation in the heart and rest of the body. This inflammation put additional stress on the heart, adding to the cascade effect, increasing damage and reducing heart function.

“Our research began by looking at how the function of one organ can affect other organs, so I thought it was very fascinating to find that a fat cell can influence cardiac function in heart failure,” Dyck said. “Fortunately, we had a drug that could inhibit fat mobilization from fat cells in mice, which actually protected the hearts from damage caused by inflammation.”

Dyck points out that although his results are promising, more work is needed to better understand the exact mechanisms at play in the process and develop a drug that could work in humans.

“This work is a proof-of-concept showing that abnormal fat-cell function contributes to worsening heart failure, and now we’re working on understanding the mechanisms of how the drug works to limit lipolysis better,” he said. “Once we get that, that’s the launchpad for making sure it’s safe and efficacious, then advancing it to our chemists, and then maybe some early trials in humans.”

Dyck said the findings–and a better understanding of how organ functions affect other organs–could be used to develop new approaches to several other diseases.

“We know that people have high rates of lipolysis when they have heart failure, so I presume this approach would benefit all types of heart failure,” he said. “But if you consider that inflammation is associated with a wide variety of different diseases, like cancer, diabetes or other forms of heart disease, then this approach could have a much wider benefit.”

###

Dyck’s research was funded by the Heart and Stroke Foundation and the Canadian Institutes of Health Research.

Media Contact
Ross Neitz
[email protected]

Original Source

https://www.ualberta.ca/folio/2021/02/fat-cells-may-influence-how-the-body-reacts-to-heart-failure-study-shows.html

Related Journal Article

http://dx.doi.org/10.1152/ajpheart.00737.2020

Tags: CardiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Plant Polyphenols: Key Players in Ovarian Aging

November 5, 2025

Revolutionizing Signal Transduction with Nano-Bio Interfaces

November 5, 2025

Revolutionizing Internal Medicine: Ambient AI Scribe Integration

November 5, 2025

Predictors of Early Childhood Mortality in Ethiopia

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plant Polyphenols: Key Players in Ovarian Aging

Revolutionizing Signal Transduction with Nano-Bio Interfaces

Comparative Genomics Reveals Microsatellite Patterns in Cereals and Legumes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.