• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How reducing body temperature could help a tenth of all ICU patients

Bioengineer by Bioengineer
February 23, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study reveals how lower temperatures improve the activity of surfactant, a molecular mixture that is essential for breathing. This indicates that therapeutic hypothermia is a potential treatment for acute respiratory distress syndrome, which affects

IMAGE

Credit: Image courtesy of Chiara Autilio and created by Alejandro Alonso.

ROCKVILLE, MD – A tenth of all intensive care unit patients worldwide, and many critical patients with COVID-19, have acute respiratory distress syndrome (ARDS). Therapeutic hypothermia, an intentional cooling of the body, has been suggested as a way to improve ARDS. New research by Chiara Autilio and colleagues in the lab of Jesus Perez-Gil at the Complutense University of Madrid shows not only how therapeutic hypothermia works in the lungs at the molecular level, but also why it could be successfully applied to ARDS. Autilio and her colleagues’ work was published in Nature Scientific Reports in January 2021 and will be presented on Tuesday, February 23 at the 65th Annual Meeting of the Biophysical Society to be held virtually.

Inside our lungs, surfactant is a molecular mixture that is essential for breathing. Premature babies are sometimes born without yet having developed surfactant and require emergency surfactant replacement treatments in order to breathe. But surfactant is also inactivated and broken up in adults with lung injuries or inflammation.

Because therapeutic hypothermia, a cooling of the body to about 33°C (or 91°F), has been used to improve breathing for some premature babies and for some kinds of cardiac arrest in adults, and some early studies have shown a benefit for ARDS, Autilio and colleagues wanted to know if cooling could impact surfactant. They looked at the physics of isolated surfactant in their lab, and Autilio said, “unexpectedly, we found an improvement in surfactant activity at 33°C.”

The team found that at 33°C, the surfactant had lower surface tension, which could make it easier for oxygen to enter the lungs. They also found that the lower tension changed the activity of the molecules in the surfactant, which prevented surfactant from being disrupted by blood molecules, which can occur during lung injury. Their results indicate that “using therapeutic hypothermia could help people with acute respiratory distress syndrome to breathe.”

There are currently clinical trials underway in other labs, testing therapeutic hypothermia as a treatment for severe breathing problems associated with COVID-19, according to Autilio. And in the Perez-Gil lab at the Complutense University, “we are working to create a surfactant for adults, a surfactant that could work in the context of acute respiratory distress syndrome,” says Autilio.

###

Media Contact
Leann Fox
[email protected]

Original Source

https://www.biophysics.org/news-room?ArtMID=802&ArticleID=10407&preview=true

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesCritical Care/Emergency MedicineHealth CareInternal Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.