• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists manipulate magnets at the atomic scale

Bioengineer by Bioengineer
February 12, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lancaster University

Fast and energy-efficient future data processing technologies are on the horizon after an international team of scientists successfully manipulated magnets at the atomic level.

Physicist Dr Rostislav Mikhaylovskiy from Lancaster University said: “With stalling efficiency trends of current technology, new scientific approaches are especially valuable. Our discovery of the atomically-driven ultrafast control of magnetism opens broad avenues for fast and energy-efficient future data processing technologies essential to keep up with our data hunger.”

Magnetic materials are heavily used in modern life with applications ranging from fridge magnets to Google and Amazon’s data centers used to store digital information.

These materials host trillions of mutually aligned elementary magnetic moments or “spins”, whose alignment is largely governed by the arrangement of the atoms in the crystal lattice.

The spin can be seen as an elementary “needle of a compass”, typically depicted as an arrow showing the direction from North to South poles. In magnets all spins are aligned along the same direction by the force called exchange interaction. The exchange interaction is one of the strongest quantum effects which is responsible for the very existence of magnetic materials.

The ever-growing demand for efficient magnetic data processing calls for novel means to manipulate the magnetic state and manipulating the exchange interaction would be the most efficient and ultimately fastest way to control magnetism.

To achieve this result, the researchers used the fastest and the strongest stimulus available: ultrashort laser pulse excitation. They used light to optically stimulate specific atomic vibrations of the magnet’s crystal lattice which extensively disturbed and distorted the structure of the material.

The results of this study are published in the prestigious journal Nature Materials by the international team from Lancaster, Delft, Nijmegen, Liege and Kiev.

PhD student Jorrit Hortensius from the Technical University of Delft said: “We optically shake the lattice of a magnet that is made up of alternating up and down small magnetic moments and therefore does not have a net magnetization, unlike the familiar fridge magnets.”

After shaking the crystal for a very short period of time, the researchers measured how the magnetic properties evolve directly in time. Following the shaking, the magnetic system of the antiferromagnet changes, such that a net magnetization appears: for a fraction of time the material becomes similar to the everyday fridge magnets.

This all occurs within an unprecedentedly short time of less than a few picoseconds (millionth of a millionth of a second). This time is not only orders of magnitude shorter than the recording time in modern computer hard drives, but also exactly matches the fundamental limit for the magnetization switching.

Dr Rostislav Mikhaylovskiy from Lancaster University explains: “It has long been thought that the control of magnetism by atomic vibrations is restricted to acoustic excitations (sound waves) and cannot be faster than nanoseconds. We have reduced the magnetic switching time by 1000 times that is a major milestone in itself.”

Dr Dmytro Afanasiev from the Technical University of Delft adds: “We believe that our findings will stimulate further research into exploring and understanding the exact mechanisms governing the ultrafast lattice control of the magnetic state.”

###

Media Contact
Gillian Whitworth
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41563-021-00922-7

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsEnergy/Fuel (non-petroleum)InternetNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Allele Frequencies in gnomAD via Ancestry

Multisensory Stimulation Reduces Neonatal Pain, Maternal Anxiety

GEWS vs. NEWS: Predicting Deterioration in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.