• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tuning the circadian clock, boosting rhythms may be key to future treatments and medicines

Bioengineer by Bioengineer
February 11, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New article unravels the remarkable relationship between time-of-day and physiology

IMAGE

Credit: Imogen Reekie

Irvine, CA – February 11, 2021 – Subconsciously, our bodies keep time for us through an ancient means – the circadian clock. A new University of California, Irvine-led article reviews how the clock controls various aspects of homeostasis, and how organs coordinate their function over the course of a day.

“What is fascinating is that nearly every cell that makes up our organs has its own clock, and thus timing is a crucial aspect of biology,” said Kevin B. Koronowski, PhD, lead author and a postdoctoral fellow in Biological Chemistry at the UCI School of Medicine. “Understanding how daily timing is integrated with function across organs has implications for human health, as disruption of the clock and circadian rhythms can be both a cause and effect of diseases from diabetes to cancer.”

The circadian clock generates a ~24 hour rhythm that controls behavior, hormones, the immune system and metabolism. Using human cells and mice, researchers from the Paolo Sassone-Corsi Laboratory at UCI’s Center for Epigenetics and Metabolism aim to uncover the physiological circuits, for example between the brain and liver, whereby biological clocks achieve coherence. Their work, titled, “Communicating clocks shape circadian homeostasis,” was published today in Science.

Circadian clocks align internal processes with external time, which enables diverse lifeforms to anticipate daily environmental changes such as the light-dark cycle. In complex organisms, clock function starts with the genetically encoded molecular clock or oscillator within each cell and builds upward anatomically into an organism-wide system. Circadian misalignment, often imposed in modern society, can disrupt this system and induce adverse effects on health if prolonged.

“Strategies to tune our clocks and boost rhythms have been promising in pre-clinical studies, which illustrates the importance of unraveling this aspect of our biology and unlocking the potential it holds for treatments and medicines of the future,” said Koronowski.

Without electrical light, high-speed travel, constant food availability and around the clock work-life schedules, our ancestors’ clocks were in constant harmony with the environment. However, due to these pressures of modern society, aligning our internal time with geophysical time has become a challenge in today’s world. Chronic misalignment – when eating and sleeping patterns conflict with the natural light-dark cycle – is associated with an increased risk of metabolic syndrome, cardiovascular disease, neurological conditions, and cancer. A large portion of the global workforce has atypical hours and may be particularly vulnerable.

“It has become urgent that we uncover the molecular underpinnings of the relationship between the circadian clock and disease,” explained Koronowski. “Deciphering the means by which clocks communicate across metabolic organs has the potential to transform our understanding of metabolism, and it may hold therapeutic promise for innovative, noninvasive strategies to promote health.”

###

This work is dedicated to the memory of Paolo Sassone-Corsi (1956-2020), a great scientist, mentor, and human. It was funded in part by the National Institutes of Health, Novo Nordisk Foundation and the National Institute of Diabetes and Digestive and Kidney Diseases.

About the UCI School of Medicine

Each year, the UCI School of Medicine educates more than 400 medical students, and nearly 150 doctoral and master’s students. More than 700 residents and fellows are trained at UCI Medical Center and affiliated institutions. The School of Medicine offers an MD; a dual MD/PhD medical scientist training program; and PhDs and master’s degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA, an MD/master’s in public health, or an MD/master’s degree through one of three mission-based programs: the Health Education to Advance Leaders in Integrative Medicine (HEAL-IM), the Leadership Education to Advance Diversity-African, Black and Caribbean (LEAD-ABC), and the Program in Medical Education for the Latino Community (PRIME-LC). The UCI School of Medicine is accredited by the Liaison Committee on Medical Accreditation and ranks among the top 50 nationwide for research. For more information, visit som.uci.edu.

Media Contact
Anne Warde
[email protected]

Original Source

https://som.uci.edu/news_releases/Tuning-circadian-clock-key-to-treatments-medicines.asp

Related Journal Article

http://dx.doi.org/10.1126/science.abd0951

Tags: BiochemistryCircadian RhythmMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet8Share2ShareShareShare2

Related Posts

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

August 18, 2025
Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

Bee-Stinger-Inspired Microneedles Revolutionize Drug Delivery, Accelerate Healing, and Enable Real-Time Wound Monitoring

August 18, 2025

Reusable ‘jelly ice’ stays cold without melting into water

August 18, 2025

A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering the Brain’s Navigational Compass: New Insights into Human Navigation

Danforth Center Grants Proof-of-Concept Funding to Four Teams Driving Agricultural Innovation

University of Houston Scientist Develops Innovative Drug Delivery System to Combat Lupus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.